

October 3, 2025

Expert Report of Kent Chamberlin, PhD

Re: Appeals Hearing Before the Taos County Board of Commissioners to Consider Appeal of Special Use Permit Application (SUP-24-000013, previously docketed as SUP-25-000003), a Proposed 195-Foot Self-Support Cell Tower at 1489 State Highway 522 in San Cristobal, New Mexico.

/s/ Kent Chamberlin

Executive Summary.

Skyway Towers is applying for a special use permit (SUP-24-000013, previously docketed as SUP-25-000003), to build and operate a 195-foot-tall self-supported cellular tower on the property of Alfred, Susan, and Jacqueline Cordova at 1489 State Highway 522 in San Cristobal, New Mexico. The stated justification for the new tower is that existing cellular infrastructure does not provide sufficient coverage, resulting in significant gaps in coverage.

The only evidence for this claim of insufficient coverage is found in unsubstantiated radiofrequency (“RF”) propagation maps submitted by the applicant to the Taos County Planning Commission. The RF propagation maps are essentially Rorschach ink blots generated by unknown computer software models, using unknown parameters and unspecified data inputs, that can be easily manipulated by the applicant to show whatever results are desired by the applicant.

In this report, I present an independent expert analysis and conclusions regarding available wireless coverage at the proposed installation area. I am Professor and Chair Emeritus of the University of New Hampshire Department of Electrical and Computer Engineering. As a research scientist in the fields of computational electromagnetics and radio wave propagation I draw on my extensive expertise in reaching the conclusions discussed below.

As is documented herein, Skyway Towers does not provide supportable evidence that significant coverage gaps exist. Industry-provided, via the Federal Communication Commission’s National Broadband Map, and community member-provided evidence, however, strongly suggest that cell coverage is adequate in the region of the proposed tower. My overall conclusion is that there is no significant gap in coverage for the provision of outdoor and in-vehicle wireless service in the proposed installation area. Hence, the building of a new 195-foot cell tower at the proposed site is not justified.

With regard to in-house wireless coverage from fixed broadband cell towers, too many variables exist to predict what types of cell towers at what heights outfitted with what numbers and types of antennas pointed in which directions and transmitting at what frequencies are needed to provide reliable in-building wireless service. Robust wireless service can require clear line of sight from the transmitting tower to the end user. Foliage, topography, and buildings generally degrade wireless signals, and the degree of that degradation depends on a number of factors. For example, the construction materials used in a building greatly affect the penetrability of

wireless signals into the building. In particular, RF signals penetrate steel-reinforced concrete walls far less robustly than they pass into a wood frame structure. And a metal frame trailer home or an RV may act as a Faraday cage and block the wireless signals from infiltrating into the structure. Thus, it is unrealistic to expect that Skyway Towers' proposed 195-foot cell tower at 1489 State Highway 522 in San Cristobal will provide robust in-building Internet and cell coverage throughout the broad, mountainous, and sparsely populated San Cristobal area. There are some structures where in-building reception will not be achieved even if a tower is located next to it.

The Case.

Skyway Towers is seeking a special use permit to construct and operate a 195-foot self-supported cellular tower at 1489 State Highway 522 in San Cristobal, New Mexico. The stated reason for needing the tower is that there are gaps of coverage in the vicinity of the proposed tower. Skyway Towers has provided a computer-generated coverage map (*see Figure 1*) suggesting that gaps exist. Figure 2 is a satellite view of roughly the same geographical region as in Figure 1 as it is difficult to identify geographic landmarks in Figure 1.

It is important to note that the applicant has not offered dropped-call logs, which are the gold standard for demonstrating true gaps in coverage. A dropped-call log is a record of calls that unexpectedly disconnect before either party ends the call, and it is a primary indicator of a gap in coverage; if dropped calls are logged in a region, it provides compelling evidence that gaps exist. Skyway Towers' failure to provide dropped-call logs has prevented an important piece of information from being considered in assessing whether gaps actually exist, though there are other ways to make that assessment as described below.

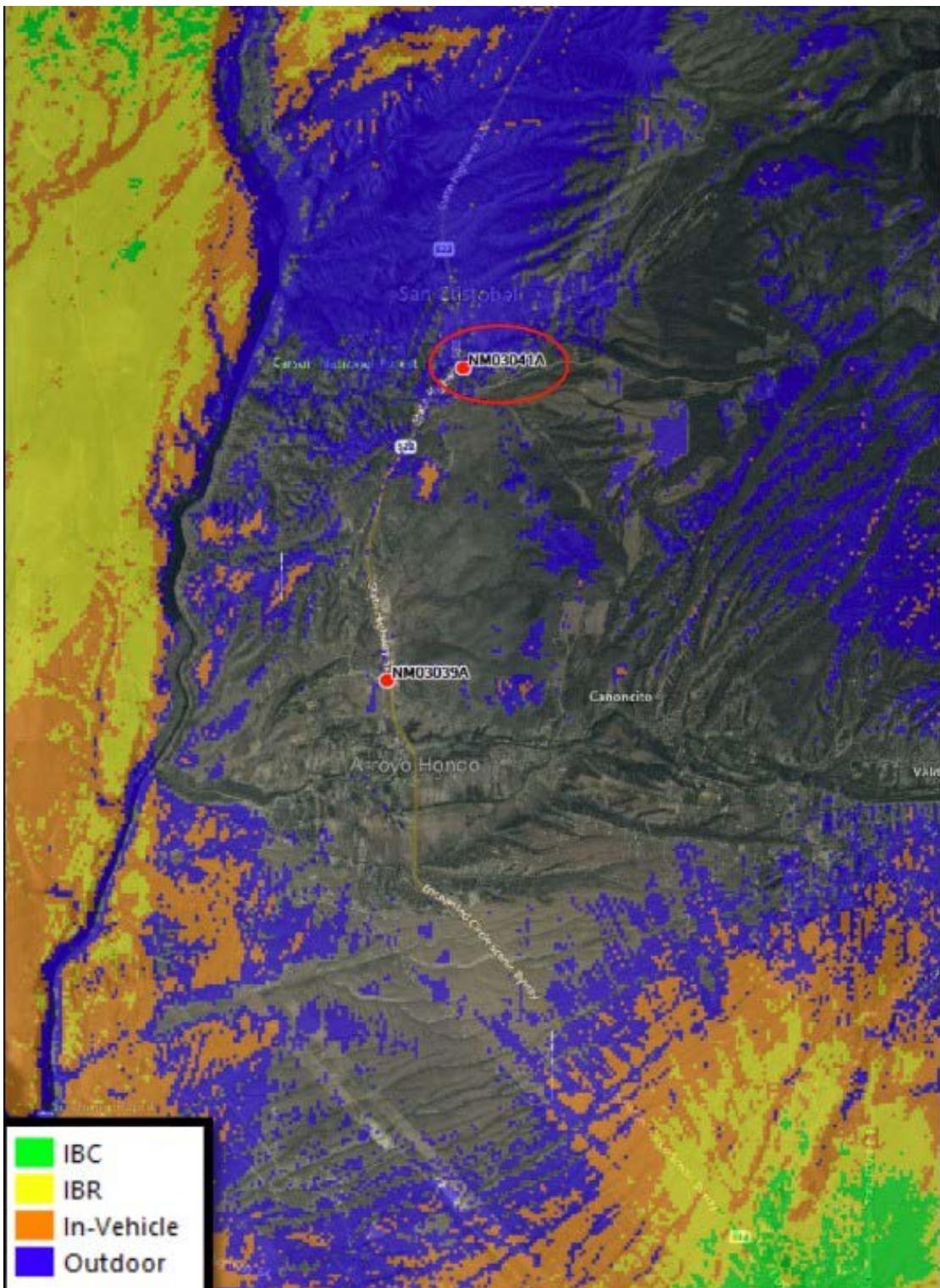


Figure 1: Modeled RF coverage map provided by Skyway Towers showing existing coverage area.

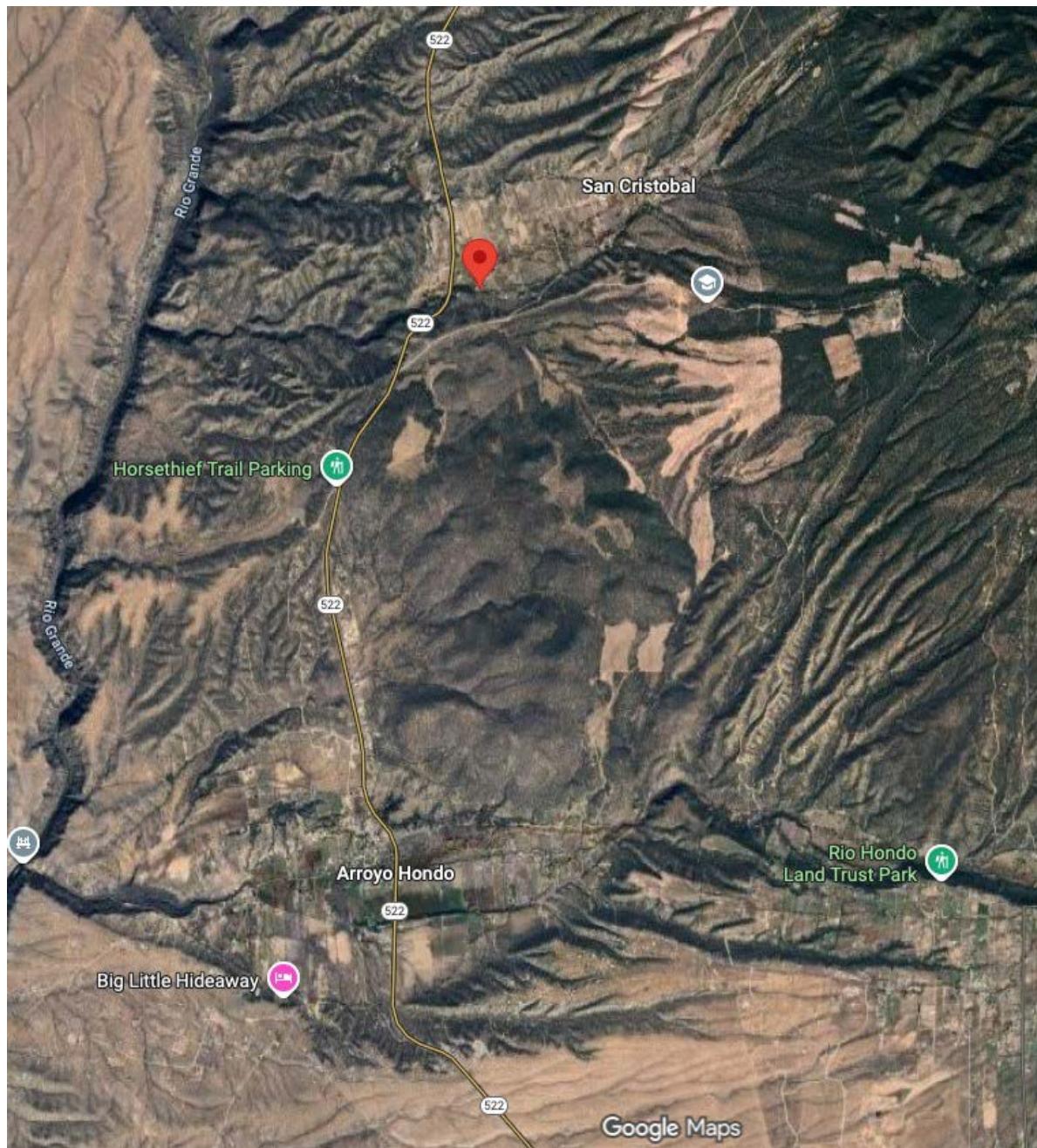


Figure 2: A Google Maps-generated satellite view of the proposed cell tower installation site and the surrounding area for greater clarity of geographic features.

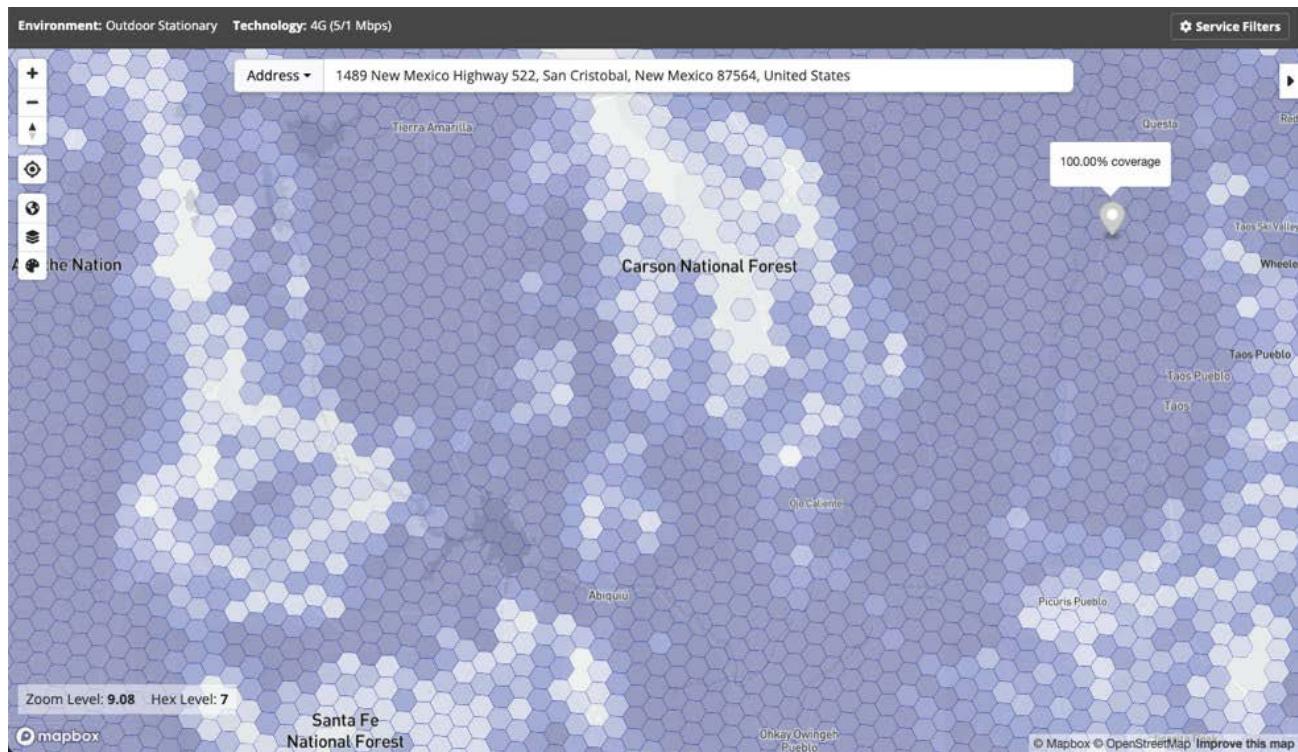
In August of 2025, San Cristobal residents sponsored a community survey to evaluate the connectivity status among 117 of the currently occupied homes in San Cristobal. The survey was conducted securely and anonymously. Responses were obtained from 104 out of the 117 occupied homes that were contacted via mail, in-person visits, phone calls, and/or internet messages. The survey concluded that 100% of respondents have the capacity to make and receive phone calls. In the absence of dropped-call logs, the fact that users can meaningfully operate their wireless devices in purported gap regions provides strong evidence that coverage does indeed exist at the proposed installation site and in areas surrounding the proposed installation site.

My role in this case as an independent scientific expert is to evaluate the information provided to the Taos County Planning Commission by Skyway Towers and to introduce other relevant public-domain data to assess the veracity of Skyway Towers' network coverage claims. Specifically, I will examine whether a significant gap in coverage exists in the area surrounding 1489 State Highway 522, whether the construction of a new 195-foot self-supported cellular tower is necessary to address an alleged gap in coverage, and whether the proposed facility represents the least intrusive, technologically feasible means of remedying the alleged gap.

The Modeled Data Provided by Skyway Towers Is Misleading and Insufficient to Establish a Gap in Coverage at the Proposed Installation Site – 1489 State Highway 522 in San Cristobal, New Mexico.

In its application, Skyway Towers asserts: “As more fully described in the accompanying letter, the facility will fill existing gaps in service in and around San Cristobal.” Yet, to my knowledge, and according to Taos County Chief Planner Rudy Perea’s knowledge, no such letter exists. The only evidence that comes remotely close to demonstrating a coverage gap at the proposed installation site is depicted in the file labeled “4.11c – NM03041A Zoning Coverage plots 5-21-24 (1).pptx.” This document contains five images that presumably represent modeled coverage areas for different tower configurations at and around the proposed installation site. It is unstated whether standard RF engineering practices were employed in generating the maps, and it is also not clear whether models like Okumura-Hata, COST-231, Longley-Rice, or others were used in generating these maps. Knowing this information is critically important because different models can provide very different results for different conditions. For example, one model may give more accurate results in mountainous environments, while another may give more accurate results in urban areas. Also, model results are dependent on input parameters that are used to describe the environment to be modeled. Without knowing what model and input parameters were used to generate the map, Skyway Towers’ materials have little utility in realistically estimating or assessing coverage gaps. Put plainly, there are standards for reporting modeled data, and those standards should be followed before maps purporting coverage gaps are accepted into evidence.

To give this decision-making body a sense of the standard data reporting practices that Skyway Towers failed to follow in this case, it is worth noting that the FCC requires internet service providers (“ISPs”) to submit detailed methodological information to ensure the accuracy and reliability of their coverage claims when providing data for inclusion in the FCC’s National Broadband Map. Per 47 C.F.R. §17004 (effective September 16, 2024), mobile providers “*...must disclose the following information regarding their radio network planning tools:*


(4) The name of the radio network planning tool(s) used, along with the following information:

- (i) The version number of the planning tool.*
- (ii) The name of the planning tool's developer.*
- (iii) The granularity of the model (e.g., 3-arc-second square points).*
- (iv) Affirmation that the coverage model has been validated and calibrated at least once using on-the-ground testing and/or other real-world measurements completed by the provider or its vendors, to include a brief summary of the process and date of calibration; and*
- (v) The propagation model or models used. If multiple models are used, the provider should include a brief description of the circumstances under which each model is deployed (e.g., model X is used in urban areas, while model Y is used in rural areas) and include any sites where conditions deviate; and*
- (vi) The granularity of the models used (e.g., 3-arc-second square points, bin sizes, and other parameters). ”*

Reasonability Check on Modeled RF Coverage Maps Provided by Skyway Towers Using the FCC's National Broadband Map.

As mentioned above, the FCC maintains a publicly available database of coverage data provided by ISPs showing where coverage does and does not exist throughout the United States. ISPs are required to submit their respective coverage information on a biannual basis. It is unlawful for providers to misrepresent their coverage areas. Given that a stark contrast exists between the coverage reported by community members and the coverage reported by Skyway Towers, I deferred to the FCC's National Broadband Map to perform a reasonability check on the RF propagation data presented by the applicant.

Figure 3 below is a coverage area map of the proposed installation site and the surrounding area generated using the FCC's National Broadband Map. As seen in the figure, there is 100% coverage at and around the proposed installation site. This is consistent with community coverage reports. Significantly, the FCC's National Broadband Map was last updated on December 31, 2024. Since then, residents have reported marked improvements in wireless coverage throughout the San Cristobal area, suggesting that current coverage is likely even stronger than what the December 2024 FCC National Broadband Map reflects.

Figure 3. Coverage area map obtained from the FCC's National Broadband Map website.

AT&T Has 100% Coverage in San Cristobal – All Residents Have Access to AT&T’s FirstNet Emergency Services Regardless of Their Wireless Carrier.

Given the information I was asked to review in this case, it is only reasonable to conclude that individuals can already successfully place a cell phone call to reach emergency services at and around the proposed installation site. No new wireless infrastructure is necessary. Figure 4 below is a coverage area map obtained from AT&T’s “Wireless coverage map.” The map shows 100% 4G LTE coverage at and around the proposed installation site. While non-AT&T users in this region might not be able to make personal phone calls or download videos in the region shown in Figure 4, they would be able to make emergency (911) calls. Their connectivity would show up on their phones as: “Emergency calls only” message near the signal bars; No signal bars, but a message like “SOS only” (especially on iPhones); A red or orange SOS icon in the status bar (iOS 16+); On Android, you might see “Emergency calls only” or “No service – emergency calls only.” The point is that all users, regardless of their providers and the type of phone they use, can make emergency calls in the region without the need for a new tower.

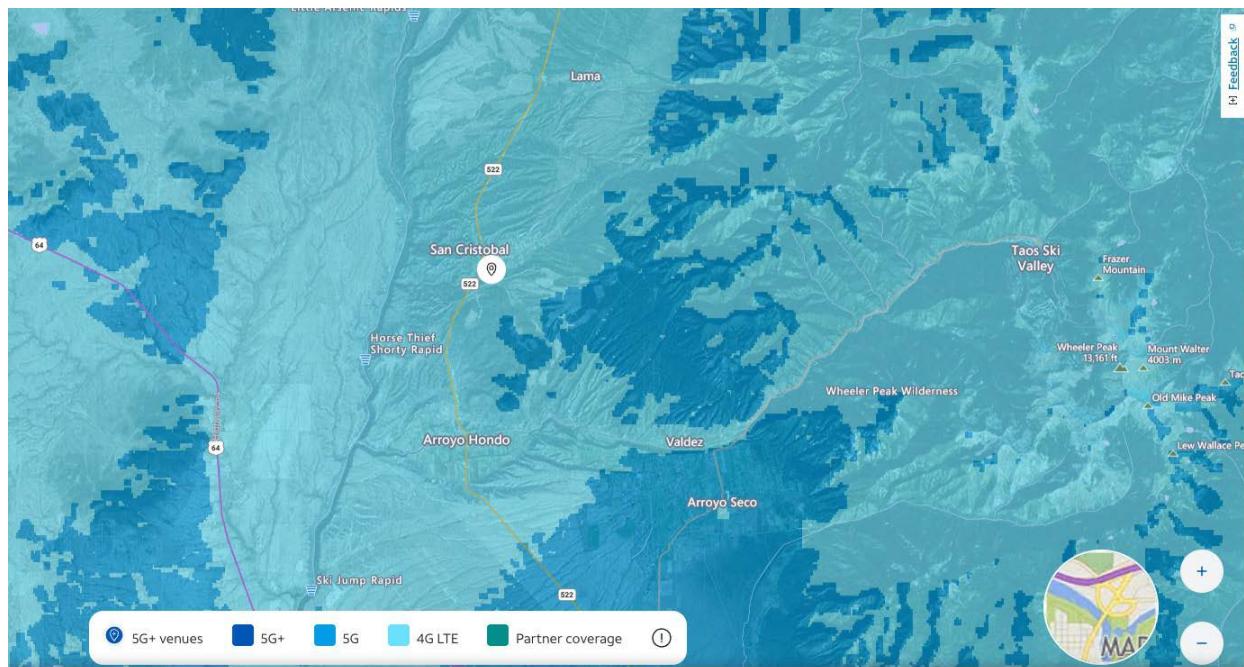


Figure 4. Coverage area map obtained from AT&T’s “Wireless coverage map” demonstrating 100% 4G LTE coverage at the proposed installation site and throughout the surrounding area.

Conclusion

The evidence presented by Skyway Towers suggesting that there is a significant gap in wireless coverage in the proposed installation area appears to be very weak. Significantly, there are no dropped-call logs to support claims about gaps in coverage, and the modeled and measured data

presented are so inadequately described that they do not stand up to scrutiny. Simply stated, Skyway Towers' evidence for coverage gaps at the proposed installation site and in the vicinity of the proposed cell tower comes nowhere close to passing the reasonability test.

On the other hand, the evidence suggesting that no significant gaps exist wireless coverage is supported by community member reports, the absence of dropped-call logs, and two cases of industry-reported coverage in the purported gap areas. **Based on this information, I can only conclude that there are no significant gaps in wireless coverage in the region of the proposed tower, and hence, there is no justification for the proposed tower.**

The focus of this report is whether gaps exist that would warrant the installation of a new cell tower at the proposed location, and as noted above, the conclusion is that current coverage is adequate without new wireless infrastructure. However, should evidence arise demonstrating that existing or newly approved wireless infrastructure is not sufficient to fulfill the needs of the community, "small cell" antennas can be strategically installed where isolated gaps in coverage may exist. Further, if in-building reception is considered to be essential, there are many ways to achieve this, such as the use of boosters.¹

In closing, there is an important point that should be made, and that is why a cell tower company would want to make a significant investment in installing wireless infrastructure that is not needed. The answer is that there is a huge financial incentive for building capacity so that the wireless telecommunications industry can dominate the very lucrative home internet market. Details about what this looks like are discussed in the article marked Exhibit A at the end of this report.

Expert Qualifications.

My career has been spent exploring the manner in which electromagnetic waves interact with a range of physical objects. An overview of my career is offered in my attached *Curriculum Vitae* (see Exhibit B), with somewhat greater relevant details provided below.

My first professional work experience was as a co-op student with the Air Force Avionics Laboratory where I was involved in projects relating to electronic countermeasures. This is relevant to the case being considered because it was then that I learned about the jamming of signals and the generation of signals that can confound communications.

In graduate school, I performed research for the Federal Aviation Administration ("FAA"), investigating the effects of terrain, vegetation, and buildings on navigation and communication systems. My PhD dissertation presented measured and modeled data on the effects of trees on VHF communication links, and I received the Radio Technical Commission for Aeronautics William E. Jackson Award for it. That work in Avionics led to a Visiting Professorship at the FAA's Technical Center where I worked on a range of navigation issues such as collision avoidance, building-scattering, and the use of GPS for non-precision approaches. The information I learned in this position is relevant to the case as it provided insights into the mechanisms that impact the propagation of high-frequency radio waves such as the signals relating to cellular communication.

¹ See <https://www.wilsonamplifiers.com/>.

In 1982, I assumed a faculty position at Ohio University, where I continued my research in Avionics and taught in areas relating to electromagnetics. Then, in 1985, I left Ohio University for a faculty position at the University of New Hampshire (“UNH”) where I continued to pursue research and teaching in the general area of electromagnetics. One relevant focus area was the development and evaluation of propagation models.²

In 1993, I took a sabbatical year at Pennsylvania State University where I continued to work on different aspects of propagation modeling and electromagnetics modeling in general.

After my first sabbatical, I returned to UNH to continue my regular teaching and research duties, where I expanded the scope of my research to include biomedical engineering while continuing my work in propagation modeling. One of my efforts involved the modeling of electromagnetic fields so that they could be used to heat soil in cold regions, thus enabling the use of bacteria for bioremediation of oil spills. We also found a sponsor interested in using a similar type of approach to shrink prostate tissue by heating it, although that proposal was not funded.

In 2000, I served out a Fulbright Distinguished Chair position in Aveiro, Portugal. My work there involved teaching and working with researchers on a variety of electromagnetics and communications-related projects. After returning from my second sabbatical, I expanded my efforts in biomedical engineering while continuing my non-biomedical efforts. UNH did not have a large biomedical program at that time and obtaining funding in that area was challenging. Despite not having funding, I was able to work with others to perform some publishable work relating to electromagnetic aspects of acupuncture.³ The relevance of this work in Biomedical Engineering is that it provided me with insights into the interaction of electromagnetic waves and human health.

In the early 2000s I worked periodically on a contract for the Department of Justice.⁴ This work involved a range of topics, which included radiowave propagation modeling and measurements⁵ and alternatives to cellphone communications in emergency situations.⁶ The reason that alternatives⁷ were sought is because wireless communications are vulnerable to saturation, hacking, and jamming. This is relevant to the case under consideration because all wireless infrastructure suffers from these vulnerabilities.

² Chamberlin, Kent A. and Luebbers, Raymond J., “An Evaluation of Longley-Rice and GTD Propagation Models,” *IEEE Transactions on Antennas and Propagation*, AP-30, No. 6, November 1982.

³ H. Sathyendra, J. Chan, K. Sivaprasad, K. Chamberlin and J. LaCourse, “Transmission Line Modeling for Acupuncture Modal Therapy,” NE Bioengineering Conference, Newark, NJ, March 2003; Kondagunta Sivaprasad, Kent Chamberlin and John LaCourse, “Transmission Line Axon Model for Acupuncture Therapy,” International Union of Radio Science (URSI) meeting in New Delhi, India in October 2005; & Kent Chamberlin, Christopher Glynn, Kondagunta Sivaprasad, “Transmission Line Axon Model for Acupuncture Therapy,” Presentation at the 2007 North American Radio Science Meeting, Ottawa, ON, Canada.

⁴ National Institute of Justice, Grant #2001-LT-BX-K010.

⁵ Kent Chamberlin, Amalia Barrios and Josh Jenkins, “Data Collection, Analysis and Model Validation of Low-Altitude Propagation for VHF Mobile Radio,” presented at the 2006 International Union of Radio Sciences (URSI) meeting in Boulder, Colorado, January 2006; Kent Chamberlin, Amalia Barrios, Kondagunta Sivaprasad and Josh Jenkins, “Data Collection, Analysis and Model Validation of Low-Altitude Propagation for VHF Mobile Radio,” International Union of Radio Science (URSI) meeting in New Delhi, India in October 2005.

⁶ Scott A. Valcourt, Kent Chamberlin, Benjamin McMahon, and Andrew Kun, “Systems Engineering of Datacasting for Public Safety Vehicles,” 2007 IEEE Conference on Technologies for Homeland Security, Woburn, MA.

⁷ See <https://www.ojp.gov/library/publications/datacasting-mobile-environment>.

Also of note is that I was appointed as an Associate Editor for the Institute of Electrical and Electronics Engineers (“IEEE”) Transactions on Antennas and Propagation, the preeminent journal in the field of radiowave modeling and measurements. In my role of Associate Editor, I was responsible for shepherding the review process for manuscripts that had been submitted to the journal. As part of that process, I would review papers submitted to the journal myself, send it to three reviewers with suitable experience to perform the review, and then make a decision about publication once the reviews had been returned. This experience provided good insights into how to evaluate peer-reviewed papers, and it provided more insights into the capabilities and limitations of propagation modeling. Although I am no longer an associate editor for IEEE, I am on the editorial review board for several scientific publications.

My teaching duties throughout my career have focused on electromagnetic theory at both the undergraduate and graduate levels, and computational electromagnetics which includes working with students on the development and validation of propagation models. Validation entails collecting signal measurements in the field and comparing them to modeled results. One major insight that I have gained in working with computer models is that they are highly sensitive to the input data parameters. A computer model will always give an answer, and that answer may not be accurate even if it has given accurate results for similar configurations. One of the key points I have tried to instill in my students is that computer models can be very useful tools, although they need to be used with care.

In related work, I continue to perform research in areas relating to biomedical engineering and have continued to work with the electrical and electromagnetic aspects of acupuncture⁸ as well as the measurement⁹ and analysis¹⁰ of biological electromagnetic signals. Because these efforts involved human subjects, I applied for and received approval from the UNH Institutional Review Board multiple times.

In 2014, I assumed the role of Chair of the Electrical and Computer Engineering Department at UNH. In that role, I was able to continue my funded research and teaching. My primary research effort during that time involved the development of an electromagnetics/thermal model of the plastic pipe-fusing process for a major plumbing and heating company. A major contribution of my work for them was to show how off-the-shelf models can be used to effectively support the design of new products. An important finding that is worth sharing here is that even very high-end models can require extensive manipulation in order to give accurate results.

In the Fall of 2019, I was asked to serve on a New Hampshire State Commission charged with exploring the health and environmental impacts of wireless communication. While I realize that

⁸ Keith Spaulding and Kent Chamberlin, “Measurements Relevant to Electrical Energy Transport both On and Off Acupuncture Meridians,” February 2011, Journal of Complementary and Alternative Medicine.

⁹ Kent Chamberlin, Ph.D., Wayne Smith, Ph.D., Seshank Appasani, Christopher W Chirgwin and Paul T Rioux, “Analysis of the Charge Exchange between the Human Body and Ground: Evaluation of “Earthing” from an Electrical Perspective,” Journal of Chiropractic Medicine, DOI: 10.1016/j.jcm.2014.10.001.

¹⁰ Ronald Croce, Amber Craft, John Miller, Kent Chamberlin and David Filipovic, “Quadriceps mechano- and electromyographic time-frequency responses during muscular contractions to volitional exhaustion,” Muscle & Nerve Journal, July 2015.

health and the environment cannot be used to deny a cell tower permit, those factors should be taken into account by decision makers. After all, if radiation from these towers was completely benign, as is stated by the wireless industry, then far fewer people would be fighting ill-conceived cell tower proposals, and I would not be serving as an expert witness in this case.

The New Hampshire Commission I served on was formed as a result of legislation HB-522 that was passed by both houses of the legislature and signed by the governor. I was asked to serve on the commission by the University System of New Hampshire (“USNH”) Chancellor because the legislation convening the Commission called for a representative from USNH with experience in Radio Frequency Engineering. In the final analysis, the Commission was comprised of thirteen members that had backgrounds that included physics, toxicology, electromagnetics, epidemiology, biostatistics, occupational health, medicine, public health policy, business, and law. With this membership, the Commission had the expertise to address the issues and questions presented to it. It is important to note that, except for the Commission members representing the wireless telecommunications industry, members were not compensated for their service, and thus, their service was considered to be independent. It is also important to note that when I was asked to serve on the Commission, I did not believe that wireless radiation was particularly harmful to human health.

The Commission met for over a year to explore information relating to wireless radiation and health. This not only included an in-depth study of existing peer-reviewed publications, but also with interviews with nine recognized experts in fields relating to wireless radiation exposure and health. Of those nine experts, all of them except one acknowledged the negative health impacts of wireless radiation exposure. The one who claimed that exposure was harmless was the expert brought in by the telecommunication industry (formerly the Cellular Telecommunications Industry Association) – the only expert who was paid to present to the Commission. It should also be noted that the Commission invited participation from the FCC, the Food and Drug Administration, and the Environmental Protection Agency, but none of these agencies provided representatives to meet with us, nor did they provide answers to our questions that were posed via email or by phone. Our explanation for government agencies’ lack of cooperation with a formal state commission is that they had been captured by the wireless telecommunications industry.¹¹

The New Hampshire Commission released its in November 2020,¹² with the overall finding being that wireless radiation is harmful, whether that radiation is generated by cellphones, cell towers, Wi-Fi, smart meters, etc. The 390-page report contains a list of 15 recommendations that provide for better protecting people and the environment against long-term radiation exposure.

Since serving on the New Hampshire Commission, I have been active in educating lawmakers, administrators, and the public about the Commission’s findings. I have made over 70 public presentations, which included a presentation at the Royal Society of Medicine in London as part

¹¹ Alster, Norm. “Captured Agency: How the Federal Communications Commission IS Dominated by the Industries It Presumably Regulates,” <https://www.ethics.harvard.edu/publications/captured-agency-how-federal-communications-commission-dominated>.

¹² Final Report on Commission to Study the Environmental and Health Effects of Evolving 5G Technology (RSA 12-K:12-14, HB 522, Ch. 260, Laws of 2019). <https://gc.nh.gov/statstudcomm/committees/1474/reports/5G%20final%20report.pdf>.

of a speaking tour in Europe, and more recently presentations relating to a speaking tour in China. I am a founding member of the International Commission on the Biological Effects of Electromagnetic Fields (“ICBE-EMF”),¹³ a group of recognized scientists with expertise in fields relating to wireless radiation and its biological effects. Working with members of ICBE-EMF, I have been a co-author on two papers relating to the harms of wireless radiation, with one documenting the inadequacy of current FCC wireless radiation guidelines¹⁴ and the other demonstrating how cellphones can be modified to lower radiation exposure for the user.¹⁵ I am co-author on another paper that advocates for the Precautionary Principle,¹⁶ which suggests that efforts should be undertaken to prove the safety of new technologies before deploying them.

The above connection between wireless radiation and health is given to show how I became involved in this issue; acknowledging that health and the environment cannot be used to deny a cell tower project, I will refer to that connection only peripherally as I address issues in this case.

¹³ See <https://icbe-emf.org/who-we-are/>.

¹⁴ Igor Belyaev; Carl Blackman; Alvaro Augusto Almeida de Salles; **Kent Chamberlin**; Suleyman Dasdag; William Dingeldein; Claudio Enrique Fernandez Rodriguez; Lennart Hardell; Kesari Kavindra; Paul Heroux; Elizabeth Kelley; Don Maisch; Erica Mallory-Blythe; Joel Moskowitz; Ron Melnick; Wenjun Sun; Igor Yakymenko, "Scientific Evidence Invalidates Assumptions Underlying the FCC and ICNIRP Exposure Limits for Radiofrequency Radiation: Implications for 5G," Environmental Health, October 2022 <https://doi.org/10.1186/s12940-022-00900-9>.

¹⁵ Igor Belyaev, **Kent Chamberlin**, Suleyman Dasdag, Alvaro Augusto Almeida De Salles, Claudio Enrique Fernandez Rodriguez, Lennart Hardell, Elizabeth Kelley, Kavindra Kumar Kesari, Erica Mallory-Blythe, Ronald L. Melnick, Anthony B. Miller, Joel M. Moskowitz and Paul Héroux, "Cell Phone Radiation Exposure Limits and Engineering Solutions", International *Int. J. Environ. Res. Public Health* 2023, 20(7), 5398; <https://doi.org/10.3390/ijerph20075398>.

¹⁶ Ben Ishai, P., Baldwin, H. Z., Birnbaum, L. S., Butler, T., **Chamberlin, K.**, et al., (2024). Applying the Precautionary Principle to Wireless Technology: Policy Dilemmas and Systemic Risks. *Environment: Science and Policy for Sustainable Development*, 66(2), 5–18. <https://doi.org/10.1080/00139157.2024.2293631>.

EXHIBIT A

September 19, 2025 › Toxic Exposures › News

TOXIC EXPOSURES

Big Telecom Wants to Take Over Home Internet Market — It Could Double Kids' Exposure to Radiation

Major telecom companies are expanding into the home internet market with wireless devices that "more than double" household radiation exposure while providing slower and less secure service, said Kent Chamberlin, Ph.D., past chair and professor emeritus of electrical and computer engineering at the University of New Hampshire.

by **Suzanne Burdick, Ph.D.**

SEPTEMBER 19, 2025

Listen to this article

7 min

AT&T, T-Mobile and Verizon are pushing into the home internet market with plug-in devices that connect wirelessly to cell towers — a move that could more than double household radiation exposure, warned **Kent Chamberlin, Ph.D.**, past chair and professor emeritus of electrical and computer engineering at the University of New Hampshire.

Telecom companies are luring people away from traditional wired internet service providers (ISPs) with promises of better connections and more affordable prices, some as low as \$35 per month.

People who enroll receive a small device that plugs into a standard electrical outlet and distributes internet access within the home via Wi-Fi. Unlike conventional routers that connect via cables, the device establishes a **wireless connection** with nearby **cell towers** and **antennas**.

"In most cases, you are going to more than double the **[radiofrequency] radiation** exposure in your home by adding this device, because your Wi-Fi devices are communicating with this little box — and that little box is connecting to the internet via wireless infrastructure," Chamberlin said.

Wireless home internet is also less secure, less reliable and slower than cabled internet, he said.

Chamberlin is a science adviser and the former president of the **Environmental Health Trust**, a nonprofit organization dedicated to scientific research and education on the effects of wireless radiation. He is also a special expert on the **International Commission on the Biological Effects of Electromagnetic Fields**.

Profit opportunity 'too great for telecom to pass up'

Last year, the **internet service market** was valued at over \$500 billion, with residential services accounting for nearly half of the total. By 2030, the internet market is expected to exceed \$875 billion.

"With the expected growth, the opportunities for profit appear to be too great for telecom to pass up, despite the clear **health** and **cybersecurity** concerns," Chamberlin said.

Attorney **Robert Berg**, who represents residents fighting proposed cell towers or wireless antenna placements near homes or schools, agreed.

"As a business model, all the major telecoms now are trying to be the single source of all your internet needs, and they're trying to use their wireless systems to do that," he said.

However, the only way the wireless industry can overtake wired ISPs is to build out wireless infrastructure beyond what is needed for cellphone communications.

That's the real reason telecom companies are pushing to install cell towers and antennas in places that already have good cell coverage, Chamberlin said.

"People need to know why towers are being placed in places where they aren't needed," he said, adding:

"Once people hear about the industry's motivation — and know the magnitude of that motivation — a lot of things click into place. The aggressive rollout of wireless infrastructure appears to be motivated by corporate greed at the expense of people's health and security."

Chamberlin said the wireless companies' motives became clear when he was serving on the New Hampshire **Commission to Study the Environmental and Health Effects of Evolving 5G Technology**. Chamberlin and other independent experts reported to state legislators on the environmental and health effects of cell towers and wireless radiation.

"We were trying to figure out why new towers were being proposed in places that clearly didn't need them," Chamberlin said. It's because "the companies want to increase their profits and extending into the home internet market is one way to achieve that goal."

Until recently, cell towers were largely confined to industrial parks and other areas permitted under local zoning laws, Chamberlin said.

Now, wireless companies want to dominate the home internet market, so they are pushing for cell tower sites in or near residential areas. These applications usually require a variance or special-use permit.

Wireless internet threatens public safety and home security

Wireless companies routinely propose new or taller cell towers, citing public safety needs.

Last year, officials told **Florida parents** that children needed a **cell tower next to the school** to stay safe in an active-shooter scenario. That claim was false, yet the wireless industry routinely spreads similar fear-based arguments, according to an earlier **investigation by The Defender**.

Wired internet is much better for protecting public safety, especially in times of emergency, Chamberlin said.

For example, a terrorist wanting to take out communication capabilities in an area could disable a cell tower using readily available, low-cost jammers. If nearby residents relied on that tower for both regular phone calls and Wi-Fi calls, they would have no means of communication.

However, if residents accessed the internet through wired cables rather than the cell tower, they could still use Wi-Fi to communicate. Jamming doesn't disable wired telephone service either.

Fiber-based internet, which uses fiber-optic cables, is much faster and more reliable than wireless networks, **including 5G**, according to a 2018 report by the National Institute for Science, Law and Public Policy.

Wireless networks that rely on **cell towers can fail** during times of high use. This is especially true during emergencies, when large numbers of people are trying to place calls at once, Chamberlin said.

The **U.S. Department of Justice** funded research by Chamberlin to determine how wireless infrastructure performs during emergencies. His findings showed that wireless networks are highly vulnerable to both jamming and hacking.

A robber could easily acquire cheap jamming devices online and temporarily knock out a home's internet connection and wireless security system, Chamberlin said.

Last year, Fox 2 Detroit reported on a string of break-ins in which **thieves used jamming technology** to disrupt the security systems in individual homes.

Criminals also could build a large-scale jammer, "go into a neighborhood, turn it on, and then nobody could communicate wirelessly," Chamberlin said.

Wired is 'future proof,' while wireless traps people into needing costly upgrades

The initial cost to convert a home to wireless internet is very low, especially since the homeowner no longer has to pay their ISP, such as a local cable company.

However, Chamberlin said, "Once you're all in and you've put your wired ISPs out of business, they [the wireless companies] can jack the price up to whatever they want."

And while fiber internet doesn't require costly software upgrades, wireless internet likely will.

EXHIBIT B

 Kent A. Chamberlin, Ph.D.

Home Address: 20 Cold Spring Road, Durham, NH
e-mail: Kent.Chamberlin@unh.edu

Education

1968-1973 University of Cincinnati

-Co-op experience with Air Force in Electronic Countermeasures

1974 BSEE Ohio University

1976 MSEE Ohio University

-Thesis: Design of a Digital Phase Lock Loop for Airborne Navigation

1982 Ph.D. Ohio University

-Dissertation: VHF Air-Ground Propagation Modeling

Areas of Expertise:

Computational Electromagnetics (Finite-Difference, Time-Domain (FDTD)); Propagation modeling (Geometrical Theory of Diffraction (GTD) and Physical Optics); Biological Signal Analysis (Frequency Domain and Wavelet)

Professional Experience Summary

Current	Professor and Chair Emeritus Special Expert for the Environmental Health Trust -had been serving as President Founder in high-tech startup company Special Expert, International Commission on the Biological Effects of Electromagnetic Radiation -had been serving as Vice-Chair Chair of the Virtual Learning Academy Charter School Board of Trustees
2014-2021	Professor and Chair, University of New Hampshire Dept. of Electrical & Computer Engineering
1985-2014	Professor, UNH Dept. of Electrical and Computer Engineering
2010 (Spring)	Visiting Professor: SRM University, Chennai, India
2000 – 2001	Fulbright Distinguished Chair in Antennas and Computational Electromagnetic at the University of Aveiro, Portugal

1993- 1994	Visiting Prof. at The Pennsylvania State University Department of Electrical Engineering. One-semester appointment to the Applied Research Labs
1982- 1985	Asst. Prof. at Ohio University Department of Electrical and Computer Engineering
1981 (Fall)	Visiting Professor at the FAA Technical Center
1977-1981	Senior Research Engineer with the Ohio University Avionics Engineering Center

Personal

United States Citizen, Married, Three Children

Research Experience

Below is a listing of research programs participated in along with the sponsoring agency and dates:

- “Error Correction Techniques for Chirped Fourier Transform in Dispersive Delay Lines”, Antenum, Inc, Jan, 2022-July 2022
- “Electromagnetic Pipe Fusion Analysis and Optimization,” Watts Water Corporation, Sept. 2017- Sept. 2020.
- “Low Cost, High Bandwidth, and Non-Intrusive Machining Force Measurement System,” The National Science Foundation, June 1, 2009- May 31, 2013
- “The Use of Datacast Signals for Public Safety Applications,” National Institute of Justice, January 2006- December 2007
- “Data Collection and Analysis of Low Altitude Propagation Effects for Mobile Radio,” U.S. Navy (SPAWAR), Feb. 04- Feb. 05.
- “Modeling the Wireless Ground-to-Ground Communication Channel”, Department of Justice (Project 54), June 2001- July 2004.
- “Distance Education Module Development,” part of an E2T2 (Enhancing Education Through Technology) grant obtained for the Seacoast Professional Development Center as part of the No Child Left Behind program, 8/04- 2/05.
- “Digital Air-Ground Link Modeling”, Federal Aviation Administration, 7/1/98-9/30/01.
- “Sidewall Dielectric Damage by RIE: Detection by Scanning Probe Microscopy and the Effect on Signal Propagation”, Semiconductor Research Corporation, 4/1/98-3/31/2001

- Development and Evaluation of a Distance Learning Classroom, Davis Educational Classroom, 1/99 - 12/99.
- “Development of the GELTI Propagation Model”, Federal Aviation Administration, 5/96- 9/97.
- “Electric Field Measurement by Scanning Probe Microscopy to Detect the Effect of Nanoscale Material Inhomogeneity on Signal Propagation in High Density Interconnects”, Semiconductor Research Corp., 10/96-12/97.
- “Propagation Model for Digital Radio in Airborne Platform”, MaddenTech (Subcontract from the U.S. Army), 9/95-9/96.
- “Development of Digital Signal Processing Techniques for Avionics Instrumentation Package”, Airfield Technologies, 1/95-8/95.
- “Modeling Propagation Path Loss for the Microwave Landing System (MLS) Operating on Humped Runways,” CTA (subcontract from the Federal Aviation Administration), 8/89-12/93.
- “Application of the Finite-Difference, Time-Domain Approach to aid in the design of low-cost, computer cabinetry that will meet FCC requirements for Radio Frequency Interference,” Digital Equipment Corporation, 6/92-12/93.
- “Investigation into reflection from terrain and building surfaces as applied to Microwave Landing System Modeling”, CTA (subcontract from the Federal Aviation Administration), 7/92-9/92.
- “Capability Enhancement of the COSITE Computer Model for Use in Air-Ground Communications Facility Design and Telecommunications Analysis,” Information Systems and Networks, Inc. (subcontract from the Federal Aviation Administration), 10/90-3/92.
- “Enhancement of FAA Modeling Capabilities,” Pabon, Sims, Smith & Associates (subcontract from the Federal Aviation Administration), 2/87-2/88.
- “Enhancement of FAA Modeling Capabilities,” Information Systems and Networks, Inc. (Subcontract from the Federal Aviation Administration, 11/86- 11/87.
- “Development of a Graphics-Oriented, Finite-Difference, Time-Domain Code in the C Programming Language, Microsoft Corporation, Summer, 1988.

- “Modeling and Validation of VOR and TACAN Errors Resulting from Near-Zone Parasitic Scatterers,” Graph-Tech, Inc. (subcontract from the Federal Aviation Administration), 11/84-8/85
- “VHF Omni-Range Maintainability and Course Accuracy, Federal Aviation Administration, 4/85-8/85
- “Modeling and Validation of VHF Air-Ground Communications Coverage in the Presence of Long-Range Radar Antennas,” Ohio University, Graph-Tech, Inc. (subcontract from the Federal Aviation Administration, 11/84-8/85
- “Microwave Landing System (MLS) Critical Areas Investigation,” Ohio University, Federal Aviation Administration, 9/83-11/84
- “Extension and Validation of the Geometrical Theory of Diffraction Propagation Model,” Ohio University, Electromagnetic Compatibility Analysis Center via Southeastern Center for Electrical Engineering Education, 6/82-1/83
- “Delivery of GTD Glide Slope Model and Operations Manual, “ Ohio University, Government of India, 10/83
- “Study of Glide Slope Signal Derogation Due to Presence of Aircraft Near Glide Slope Critical Area”, Federal Aviation Administration
- “Electromagnetic Interference Measurements on Emissions from Industrial, Scientific, and Medical (ISM) Equipment and Their Effects on ILS Localizer Receiver Performance,” Federal Aviation Administration
- “Development of Ground-to-Air Coverage-Area Prediction for VHF/UHF Communications,” Federal Aviation Administration

Other research efforts include: A centralized computer monitor system for O’Hare Airport (FAA); Development of a mathematical model and computer simulation for the Memory-Aided, Phase Lock Loop (MAPLL) for the Naval Avionics Facility in Indianapolis; Evaluation of Omega navigation receivers for the U.S. Coast Guard; Investigation of snow effects on the ILS Glide Slope.

Consulting (abbreviated)

AMI, Inc.: Modeling microwave devices to exploit frequency-dependent characteristics including the Chirped Fourier Transform.

Most & Associates: Expert witness for Main Coalition to Stop Smart Meters v. Maine Public Utilities Commission, Maine Supreme Court.

Byonyks, Inc: Exploring electromagnetic compatibility (EMC) issues on circuits for medical devices.

Remcom, Inc.: Provide engineering support and analysis relating to electromagnetics modeling efforts.

New Hampshire Public Television: Performed a signal coverage study as a pre-pilot program to implement datacasting for public safety applications.

KAI, Inc.: Performed FDTD analysis of heating effects of an antenna positioned in oil-bearing soil.

Information Systems & Networks Corporation: Aided in specifying a frequency management strategy for siting multi-channel, air-ground communication facilities.

Pacific Telecommunications Corporation, Alaskom Division: Investigated radiation patterns for meteor burst communication systems. This effort included computer simulation and airborne data collection for directional 40 MHz systems operating in the presence of irregular terrain.

Memberships

International Commission for the Biological Effects of Electromagnetic Fields (ICBE-EMF), IEEE (Senior Life Member): Antennas and Propagation Society and Electromagnetic Compatibility Society, Sigma Xi, Tau Beta Pi, Applied Computational Electromagnetics Society (ACES), International Union of Radio Scientists URSI)

Honors

Awarded Distinguished Professor of Renmin Hospital of Wuhan University

Awarded the UNH College of Engineering and Physical Sciences Outstanding Teacher for 2014

Awarded a Fulbright Distinguished Chair, served in Aveiro Portugal

Received a UNH Industrial Research Consulting Center Research Award

Awarded a Fulbright Fellowship in 1993 but was unable to accept because a family member could not take a requisite vaccine.

Received the Radio Technical Commission for Aeronautics William E. Jackson Award presented by the FAA Administrator

Professional Service

Active reviewer for several IEEE publications

Associate Editor for IEEE Transactions on Antennas and Propagation

Associate Editor of the International Journal for Computing

Proposal Reviewer for National Science Foundation, the National Institute for Health and the American Association for the Advancement of Science

Session Chair for numerous IEEE and URSI conferences

Editorial Review Board for SciTech Publishing

Served as member of the Evaluation Team, coordinated by the New Hampshire Department of Education, for the American University of Madaba in Jordan

Refereed, Invited, and Award-Winning Papers

Ben Ishai, P., Baldwin, H. Z., Birnbaum, L. S., Butler, T., **Chamberlin, K.**, Davis, D. L., ... Taylor, H. (2024). Applying the Precautionary Principle to Wireless Technology: Policy Dilemmas and Systemic Risks. *Environment: Science and Policy for Sustainable Development*, 66(2), 5–18. <https://doi.org/10.1080/00139157.2024.2293631>

Igor Belyaev, **Kent Chamberlin**, Suleyman Dasdag, Alvaro Augusto Almeida De Salles, Claudio Enrique Fernandez Rodriguez, Lennart Hardell, Elizabeth Kelley, Kavindra Kumar Kesari, Erica Mallory-Blythe, Ronald L. Melnick, Anthony B. Miller, Joel M. Moskowitz and Paul Héroux, “Cell Phone Radiation Exposure Limits and Engineering Solutions”, International *Int. J. Environ. Res. Public Health* 2023, 20(7), 5398; <https://doi.org/10.3390/ijerph20075398>

Igor Belyaev; Carl Blackman; Alvaro Augusto Almeida de Salles; **Kent Chamberlin** ; Suleyman Dasdag; William Dingeldein; Claudio Enrique Fernandez Rodriguez; Lennart Hardell; Kesari Kavindra; Paul Heroux; Elizabeth Kelley; Don Maisch; Erica Mallory-Blythe; Joel Moskowitz; Ron Melnick; Wenjun Sun; Igor Yakymenko, "Scientific Evidence Invalidates Assumptions Underlying the FCC and ICNIRP Exposure Limits for Radiofrequency Radiation: Implications for 5G ", Environmental Health, October 2022 <https://doi.org/10.1186/s12940-022-00900-9>

Patrick Abrami, Kenneth Wells, Gary Woods, James Gray, Tom Sherman, Denise Ricciardi, Brandon Garod, Esq., Carol Miller, David Juvet, **Kent Chamberlin**, Bethanne Cooley, Michele Roberge, and Paul Héroux, “Final Report on Commission to Study the Environmental and Health Effects of Evolving 5G Technology,” (RSA 12-K:12-14, HB 522, Ch. 260, Laws of 2019), DOI: 10.13140/RG.2.2.31724.59528

K Chamberlin, B McMahon, “Magnetic-field antenna for mobile reception of horizontally-polarized digital television-band signals,” International Journal of Wireless and Mobile Computing 19 (2), 133-137

Michael Klempa and Kent Chamberlin, “Broadband Termination Technique,” in review, IEEE Microwave Magazine.

Minu Valayil and Kent Chamberlin, “Enhancement of Parameters of Slotted Waveguide Antennas Using Metamaterials,” APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL. 34: 272-279. Feb 2019

Ronald Croce, Amber Craft, John Miller, Kent Chamberlin and David Filipovic, "Quadriceps mechano- and electromyographic time-frequency responses during muscular contractions to volitional exhaustion," *Muscle & Nerve Journal*, July 2015.

Amber Craft, Ronald Croce, John Miller, Kent Chamberlin and David Filipovic, "Shifts in Spectral Power Detected By Fourier and Wavelet Transforms During Muscular Contractions To Volitional Exhaustion," *Clinical Kinesiology* 69(2):5-10 · December 2014

Ronald Croce, John Miller, Kent Chamberlin, David Filipovic and Wayne Smith, "Wavelet analysis of Quadriceps power spectra and amplitude under varying levels of contraction intensity and velocity," *Muscle & Nerve* 11/2014; 50(5). DOI:10.1002/mus.24230

Kent Chamberlin, Ph.D., Wayne Smith, Ph.D., Seshank Appasani, Christopher W Chirgwin and Paul T Rioux, "Analysis of the Charge Exchange between the Human Body and Ground: Evaluation of "Earthing" from an Electrical Perspective," *Journal of Chiropractic Medicine*, DOI: 10.1016/j.jcm.2014.10.001 .

Keith Spaulding and Kent Chamberlin, "Measurements Relevant to Electrical Energy Transport both On and Off Acupuncture Meridians," February 2011, *Journal of Complementary and Alternative Medicine*.

Kent Chamberlin, "Intermodulation Product Interference: Theory and Practice," Keynote Address, International Conference on Communications & Computing (ICCC '10), Chennai, India, April 2010.

Benjamin McMahon, Kent Chamberlin & Scott Valcourt," Datacasting in the Mobile Environment," *Journal of Networks*, Issue 7, 2008.

Jason Chan, K. Sivaprasad, and Kent Chamberlin, "Modeling Frequency-Dependent Stripline Losses at High Frequencies," *IEEE Trans. Packaging Materials*, March 2007

Kent Chamberlin and Shahaji Bhosle," A Robust Solution for Preprocessing Terrain Profiles for Use with Ray-Tracing Propagation Models," *IEEE Trans. on Antennas & Propagation*, October 2004

Kent Chamberlin and Maxim Khankin, "Measuring the Impact of In-Vehicle-Generated EMI on VHF Radio Reception in an Unshielded Environment," Proceedings of the 2004 International Symposium on Electromagnetic Compatibility and winner of an "Excellence of the Presented Papers Award", Sendai, Japan

Kent Chamberlin and Dragan Vidacic, "Analysis of Finite-Differencing Errors to Determine Cell Size When Modeling Ferrites and other Lossy Electric and Magnetic Materials Using FDTD, " *IEEE Trans. on Electromagnetic Compatibility*, November 2004

Todd S. Gross, Kevin G. Soucy, Ebrahim Andideh, and Kent Chamberlin," Detection of Plasma-Induced, Nanoscale Dielectric Constant Variations in Carbon-Doped CVD Oxides by Electrostatic Force Microscopy," *Journal of Applied Physics*, 35 (2002) pg. 723-728.

Todd S. Gross, Christopher M. Prindle, Kent Chamberlin, Nazri bin Kamsah, and Yuanyan Wu, "Two-dimensional, electrostatic finite element study of tip-substrate interactions in electric force Microscopy of high-density interconnect structures," *Ultramicroscopy* Journal, 87 (2001) pg. 147-154

Kent Chamberlin, Mikhailo Seledtsov, and Petar Horvatic, "Modeling Large and Small-Scale Fading on the DPSK Datalink Channel Using a GTD Ray-Tracing Model", invited paper, Proceedings of the 2000 Applied Computational Electromagnetics Symposium, Monterey, California.

Jennifer Bernhard, Kent Chamberlin, and Chris Williamson, "A Student Perspective on an Internet-Based Synchronous Distance Learning Course Experience," *The Journal of the American Association of Engineering Education*, January 2000.

Bruce Archambeault, Kent Chamberlin, and Omar Ramahy, "EMC Modeling of Shielded Enclosures with Apertures and Attached Wires in a Real-World Environment", *Journal of the Applied Computational Electromagnetics Society*

Kent Chamberlin, "Terrain-Effect Modeling Using the Geometrical Theory of Diffraction," invited paper, *The Radio Science Bulletin*, International Union of Radio Science, March 1997.

Kent Chamberlin," An Automated Approach for Implementing GTD to Model 2-Dimensional Terrain Effects at Microwave Frequencies," *IEEE Transactions on Electromagnetic Compatibility*, February 1996

Kent Chamberlin and Lauchlan Gordon, "Modeling Good Conductors Using the Finite-Difference, Time-Domain Technique," *IEEE Transactions on Electromagnetic Compatibility*, Vol. 37, No. 2, May 1995.

Kent Chamberlin, Ken Komisarak, and Kondagunta Sivaprasad," A Method of Moments Solution to the Twisted-Pair Transmission Line", *IEEE Transactions on Electromagnetic Compatibility*, February 1995.

Kent Chamberlin," Overview of Terrain-Effect Modeling Using the Geometrical Theory of Diffraction," Invited Paper, Proceedings of the 1994 Beyond Line-of-Sight Conference, University of Texas, August 1994.

Kent Chamberlin, "Applications for Theory of Re-Radiation by Non-Linearly Terminated Antennas," Invited Paper, Proceedings of the 1993 URSI/IEEE Symposium, Kyoto, Japan.

R. Luebbers, K. Kunz, and K. Chamberlin," An FDTD Analysis of Transient Response from Non-Linearly Terminated Scatterers," *IEEE Transactions on Antennas and Propagation*, Vol. 41, no. 5, May 1993.

Chamberlin, Kent," Computer Modeling of MLS Signal Strength in The Presence of Runway Hump Shadowing," Invited Paper, Proceedings of ANTEM'92 Symposium on Antenna Technology and Applied Electromagnetics, Winnipeg, Manitoba, Canada, August, 1992.

Kent Chamberlin, Jarrett Morrow, and Raymond Luebbers," Frequency-Domain and FDTD Predictions of Harmonic Radiation by Nonlinearly-Terminated Dipole," *IEEE Transactions on Electromagnetic Compatibility*, November 1992.

Luebbers, R.J., Kunz, K.S., and Chamberlin, K.," Finite-Difference, Time-Domain Solution to the Wave Equation for Classroom Applications", *IEEE Transactions on Education*, November 1989 (Special Edition on Electromagnetics).

Chamberlin, Kent," Quantitative Analysis of Intermodulation Product Interference", *IEEE Transactions on Electromagnetic Compatibility*, November, 1989.

Chamberlin, Kent," The Effect of Tree Cover on Air-Ground, VHF, Propagation Path Loss", *IEEE Transactions on Communications*, September 1986

Chamberlin, Kent A. and Luebbers, Raymond J.," An Evaluation of Longley-Rice and GTD Propagation Models", *IEEE Transactions on Antennas and Propagation*, AP-30, No. 6, November, 1982

Reviewed Conference Papers (abbreviated)

Minu Valayil and Kent Chamberlin, "Enhancement of Antenna Parameters of Slotted Waveguide Antennas Using Metamaterials," presented 2014 IEEE International Symposium on Antennas and Propagation

Kent Chamberlin and Daniel Carchidi, "Rapid Course Development Using OCW Resources: Applying the Inverted Classroom Model in an Electrical Engineering Course," Cambridge 2012: Innovation and Impact - Openly Collaborating to Enhance Education

Rama Rao and Kent Chamberlin, "Path Gain Measurements at 868/915 MHz for Wireless Sensor Communications in Indoor Corridors," 5th IEEE International Conference on Advanced Networks and Telecommunication Systems (ANTS), IEEE ANTS 2011, Bangalore, India

Todd Gross and Kent Chamberlin, "Low Cost, High Bandwidth, and Non-Intrusive Machining Force Measurement System," Proceedings of 2011 NSF Engineering Research and Innovation Conference, Atlanta, Georgia

Dan Brogan and Kent Chamberlin, "Comparison of Single-Frequency Monopulse Techniques that Mimic the Results of Multiple-Frequency, Single-Aperture Interferometry," 159th Meeting of the Acoustical Society of America, Baltimore, MD, April 2010

Dan Brogan and Kent Chamberlin, "Phase and Amplitude Monopulse Techniques to Increase the Accuracy of Within-Beam Bearing Estimates of Volume Scatterers," 158th Meeting of the Acoustical Society of America, October 2009, San Antonio, TX

Daniel S. Brogan and Kent A. Chamberlin, "Use of Within-Beam Mapping in Conjunction with Kalman Filtering to Improve Angle of Arrival Estimation Accuracy in Multi-beam Echo-Sounding," 158th Meeting of the Acoustical Society of America, October 2009, San Antonio, TX

Kent Chamberlin, Andrew Kun, Scott Valcourt and Benjamin McMahon," Evaluation of Data-casting in the Mobile Environment," Invited presentation, the 2008 International Wireless Communications Expo in Las Vegas, February 2008

Scott A. Valcourt, Pushpa Datla, Kent Chamberlin, Benjamin McMahon, "Information Integration for Public Safety Officers," in Proceedings of the SPIE Defense & Security Conference, Orlando, FL, March 2008.

Scott A. Valcourt, Pushpa Datla, Kent Chamberlin, Benjamin McMahon, "Using Two-Way Datacasting to Deliver Real-Time Public Safety Information," in Proceedings of the 2008 IEEE International Conference on Technologies for Homeland Security, Boston, MA, May 2008.

Kent Chamberlin, Christopher Glynn, Kondagunta Sivaprasad, "Transmission Line Axon Model for Acupuncture Therapy," Invited, presented at the 2007 North American Radio Science Meeting, Ottawa, ON, Canada.

Kent Chamberlin, Andrew Kun, Benjamin McMahon, Scott Valcourt, "Measuring Datacast Channel Characteristics for the Mobile Environment," Invited, presented at the 2007 North American Radio Science Meeting in Ottawa, ON, Canada.

Scott A. Valcourt, Kent Chamberlin, Benjamin McMahon, and Andrew Kun, "Systems Engineering of Datacasting for Public Safety Vehicles," 2007 IEEE Conference on Technologies for Homeland Security, Woburn, MA

Kent Chamberlin, Scott A. Valcourt, Benjamin McMahon and Andrew Kun, "Measurement of Propagation Effects for High-Speed, Digital UHF Channels," 2007 IEEE AP-S International Symposium on Antennas and Propagation in Honolulu, Hawaii, June 10-15, 2007

Henk Spaanenburg, Andrzej Rucinski, Kent Chamberlin, Thaddeus Kochanski and Lennart Long, "Globally-Collaborative Homeland" Security System Design," presented at and in the proceedings of the 2007 International Conference on Microelectronic Systems Education, San Diego, CA.

Kent Chamberlin, Andrew Kun, Benjamin McMahon and Scott Valcourt, "Evaluation of Data-casting in the Mobile Environment," presented at and in the proceedings of the 2007 IEEE 66th Vehicular Technology Conference, Baltimore, MD

Kent Chamberlin, Larry Brady and Raymond Luebbers, "Computer Simulation to Assess Effects of Aircraft Structures on Flight Inspection Antenna Performance," presented at and in the proceedings of the International Flight Inspection Symposium in Toulouse, France, June 2006.

Kent Chamberlin, Amalia Barrios and Josh Jenkins, "Data Collection, Analysis and Model Validation of Low-Altitude Propagation for VHF Mobile Radio," presented at the 2006 International Union of Radio Sciences (URSI) meeting in Boulder, Colorado, January 2006.

Kondagunta Sivaprasad, Kent Chamberlin and John LaCourse, "Transmission Line Axon Model for Acupuncture Therapy," International Union of Radio Science (URSI) meeting in New Delhi, India in October 2005.

Kent Chamberlin, Amalia Barrios, Kondagunta Sivaprasad and Josh Jenkins, "Data Collection, Analysis and Model Validation of Low-Altitude Propagation for VHF Mobile Radio," International Union of Radio Science (URSI) meeting in New Delhi, India in October 2005

Jason Chan, K. Sivaprasad & K. Chamberlin, "An Improved Estimation of Composite Strip-Line Losses" PIERS 2004, Pisa, Italy, March '04.

Kent Chamberlin, K. Sivaprasad and Maxim Khankin, "Measuring Small-Scale Fading at VHF Frequencies," presented at the 2004 International Union of Radio Sciences (URSI) meeting in Boulder, Colorado, January 2004.

Chan, Sathyendra, Sivaprasad, Chamberlin," Estimation of Strip-Line Losses in Printed Circuit Boards," Proceedings of the 2003 International Symposium on Antennas, Propagation, and EM Theory (ISAPE), Beijing, China

H. Sathyendra, J. Chan, K. Sivaprasad, K. Chamberlin and J. LaCourse, "Transmission Line Modeling for Acupuncture Modal Therapy," NE Bioengineering Conference, Newark, NJ, March 2003.

K. Chamberlin, M. Khankin, A. Barrios, "Progress on the Validation of Short-Distance, Ground-to-Ground Propagation Models at VHF Frequencies," USNC/CNC/URSI North American Radio Science Meeting in Columbus, Ohio, June 2003

Chamberlin, Kent, "Evolution of a Bottom-Up Distance Education Program," Proceedings of the 2002 American Society of Engineering Education Conference in Berlin, Germany

Chamberlin, Kent, "A Streamlined Approach for Collecting Signal Strength Data to Validate a Ground-To-Ground Propagation Model," presented at the International Union of Radio Scientists (URSI) meeting in Boulder, Colorado, January 2002

Barbara Dziurla-Rucinska and Kent Chamberlin, "Not so distant distance learning", Proceedings of the 6th Annual Advanced Technology Workshop ATW'98, May 19-20, 1998, Ajaccio, Corsica, France

Presentations Relating to Service on New Hampshire Commission on Wireless Radiation

Date	Presentation Details
2/24/2021	Keene City Council meeting (Zoom)
3/13/2021	Overview of New Hampshire Commission (YouTube)
4/7/2021	Interview Regarding NH Commission (YouTube)
6/16/2021	Presentation to York, Maine Board of Trustees and Citizens (Zoom)
6/24/2021	Movements of Safe Technology in North America Conference (Brazil via Zoom)
7/5/2021	Public Information Session for Pittsfield, MA (Zoom)
7/22/2022	Presentation to Environmental Working Group Administrators
7/30/2021	Radio Interview about Wireless Radiation (CKWR)
7/30/2021	Radio Interview about Wireless Radiation (WTBR)
8/17/2021	Public Information Session in York Maine (Zoom)
8/19/2021	Presentation to Lenox, MA Board of Health (Zoom)
9/3/2021	Presentation to National Call for Safe Technology (Zoom)
9/17/2021	Presentation to Mass. Public Utilities Commission on Wireless Radiation (Zoom)
9/23/2021	Public Presentation about wireless radiation at York, ME public library (in-person)
9/28/2021	Radio Interview about Wireless Radiation (Housatonic Live radio & podcast, Episode 71.7)
9/29/2021	Radio Interview about Wireless Radiation (David DeHaas radio & podcast)
10/7/2021	Podcast Interview about Wireless Radiation (John Krol)
11/3/2021	Presentation to Canadian Riding Representatives
11/9/2021	Environmental Health Trust Podcast
12/1/2021	Public Presentation about wireless radiation at Berwick, ME public library (in-person)
12/8/2021	New Hampshire Commission Setback Justification
1/13/2022	Testimony for HB1644 in NH House of Reps. Science, Technology & Energy Committee (in-person)
1/18/2022	Birmingham, MI presentation to School Board and Parents Part 1 (Zoom)
2/16/2022	Birmingham, MI presentation to School Board and Parents Part 2 (Zoom)
3/8/2022	Presentation to Stanley County, NC County Commissioners (Zoom)
3/15/2022	Testimony for HB1644 in NH House of Reps. Science, Technology & Energy Subcommittee (in-person)
3/29/2022	Radio Interview and Podcast with Green Street Radio
5/11/2022	Testimony for HB1644 in NH House of Reps. Science, Technology & Energy Subcommittee (in-person)
5/18/2022	Buckland, MA Public Hearing (Zoom)
6/1/2022	White Plains, NY City Council & Citizens
7/22/2022	Environmental Working Group (Uloma Uche, Olga Naidenko, Tasha Stoiber)

10/19/2022 Oley Township, PA Board of Supervisors and Citizens

10/25/2022 White Plains, NY 5G: An Undeniable Risk (my part at 16:30)

11/17/2022 Lenox, MA forum with Scott, Theodora, me and Andy Molner

1/25/2023 Queens, NY Community Board #1

3/30/2023 Let's Connect- Expert Forum hosted by Pittsfield & Wyandotte Communities

4/6/2023 Presentation to Hartford Health Director (Liany Arroyo) and Hispanic Community Leaders

4/12/2023 Presentation to Dr. Jeffery Robinson and Faculty of the Paul Robeson Malcolm X Academy

4/14/2023 Presentation to concerned parents of students at Starkey Ranch School

5/16/2023 Commissioner Mariano and Legal Team: they decide on permit for tower on Starkey Ranch School

6/12/2023 European Tour: Bexhill by Sea

6/13/2023 European Tour: Wimbledon

6/14/2023 European Tour: Royal Society of Medicine

6/15/2023 European Tour: Oxford, UK

6/17/2023 IEEE TC95 Meeting Presentation in Newbury, UK

6/17/2023 European Tour: Belgium-Rièze; Europeans for Safe Connections

6/18/2023 European Tour: York, UK

6/23/2023 European Tour: Interview with Stichting EHS group in Amsterdam

6/27/2023 Presentation to The Netherlands Knowledge Platform for Charging Infrastructure

8/18/2023 Interview at Conway Daily Sun

9/26/2023 Turning Down the Dial on Wireless Radiation in NC's Schools

10/18/2023 Stamford, CT Land-Use Commission of the Board of Representatives

11/15/2023 North Conway, NH Pope Memorial Library

1/18/2024 Green Street Radio Interview about OneName Project with Ruth Moss

1/29/2024 Presentation to Williamson County, TN Commission

2/15/2024 Testimony for Wanaque County, NJ Planning Board

3/5/2024 Hawaii Dept. of Education, Michael Otsuji

5/14/2024 National Spectrum Managers Association (NSMA)

5/21/2024 The Wave Forward Podcast with Michaela Z

5/30/2024 Environment + Energy Podcast/Vodcast Series with Jessica Hunt

6/4/2024 Presentations at Yale Symposium

6/12/2024 Presentation to Pittsfield, MA City Council in recognition of EMS Day Proclamation

6/12/2024 Interview on Channel 8 regarding proposed cell tower in Carlsbad, CA

7/5/2024 Presentation regarding smart meters with Paul Héroux

8/8/2024 Presentation to Administrators of the Village of Egg Harbor, WI

9/29/2024 Brief video to Ithaca, NY Planning Board

10/7/2024 Presentation to St. Catherine of Siena Elementary School Community, Manchester, NH

2/8/2025 Presentation arranged by Jensen Silvas, Streetsboro, Ohio

2/13/2025 In-person presentation to La Jolla, CA community

3/14/2025 Barcelona Medical Conference: II Congress of Medicine and Environmental Health

4/14/2025 Corona del Mar CA HoA

4/16/2025 The Real Truth About Health Webinar

4/18/2025 Greenfield MA ZBA with focus on engineering questions

- 4/21/2025 Renmin Hospital of Wuhan University
- 4/22/2025 Tongji Medical College, HURST Symposium on Digital Health and Health Policy
- 4/23/2025 Wuhan University

Administrative, Committee, and Outreach Experience

Organizing Committee for the OneName Project (Fall 2023- present): This group was formed in an effort to determine a single name to represent what is currently known as ElectromagneticHyperSensitivity (EHS). Presently, there are multiple names used to describe EHS, and this multiplicity poses a challenge when advocating for those with the affliction.

New Hampshire State Commission HB522 5G (August 2019-November 2020): This commission was convened to evaluate how the State should respond to potential health impacts associated with the rollout of 5G communications. I was appointed to this commission by the USNH Chancellor.

URC/ISE Planning Committee (Co-Chair, AY13-18): College committee charged with planning the logistics of the UNH Undergraduate Research Conference

URC/ISE Steering Committee (AY13): University committee addresses conference details from a university perspective

University Research and Engagement Academy Proposal Selection Committee (AY12-Present): University committee charged with selecting inductees into the Academy based upon their research proposals.

ECE Technician Search Committee (Chair, AY13): This departmental committee worked with HR to define the position and then successfully fill it.

UNH Disclosure Review Committee (AY99-02 and AY13-18): This university committee meets on a regular basis to determine whether relationships identified by proposal submitters constitute a conflict of interest according to university rules.

ECE Department Graduate Committee (Chair for over 15 years until AY14): Performed regular duties of graduate coordinator for ECE Masters and Doctoral programs, plus dealing with a program review and the addition of a non-thesis Master's option.

Search Committee for Electrical Engineering Technology Faculty Member at UNH Manchester (AY 13)

Advanced Manufacturing Cluster Hiring in Statistics Committee (AY2013): This committee was convened to ensure continuity and coordination in the Advanced Manufacturing cluster hire.

ad-hoc Committee on Promotion and Tenure Standards (AY13-17): This committee was formed by the Faculty Senate to look at issues that have arisen over the years relating to P&T. I was elected by the college to serve.

Faculty Activity Reporting Working Group (AY13): I was appointed by the Faculty Senate to monitor the process by which the FAR is being evaluated and revised.

CEPS e-Learning Committee (AY12 (Chair)): The mission of this committee is to determine next steps necessary to move forward with online programs, with findings documented in a final report.

eUNH Working Group (AY12): This group is advisory to the eUNH Steering Committee and was involved with tasks such as evaluating proposals submitted by outside vendors interested in partnering with UNH on online initiatives.

CEPS Curriculum and Academic Planning Committee (AY12):

College Promotion and Tenure Committee (AY01-03 and AY010-11(Chair)): The work of this time-consuming committee was complicated by unclear guidelines involving research faculty. Efforts outside of normal P&T Committee duties took place to help clarify those guidelines.

Faculty Senate Research and Public Service committee (AY11, Chair): This committee responded to all of the eight charges assigned to us.

President's Panel on Internationalization (AY11): I served on this panel as the representative of the Faculty Senate.

UNH Research Council (AY11): I served on this committee because of my role as Chair of the Faculty Senate Research & Public Service Committee

Sustainability Dual Major Leadership Team (summer-fall 2012): the goal of our team is to create a dual major in Sustainability that can be taken by all undergraduates at UNH.

Search Committee for Computer Science- Engineering Technology Faculty Member at UNH Manchester (AY10)

New Markets Working Group of the Strategic Planning Committee (Spring 09): as its name implies, this working group was charged with identifying new revenue streams for UNH.

CEPS Graduate Scholarship Committee (AY07- 09): this committee awards college scholarships to graduate students, including summer stipends and one-year fellowships that are used as a recruitment tool for outstanding applicants.

Faculty Moderator for the College of Engineering and Physical Sciences (AY08-09): this elected position entails the responsibility for conducting all college wide meetings and elections. The moderator works closely with the Dean's Office to help ensure that governance is carried out efficiently and according to policy.

Faculty Fellow for Distributed and Distance Education (AY03-04): the primary goal of this position, which received 50% support by the Provost's office, was to identify and articulate a University Vision on distance education. Duties included convening a working group to represent constituencies across campus in addition to meeting with individuals both on and off campus to obtain information and insights germane to distance education and e-learning in general.

Duties also included taking the lead on writing a proposal to consolidate distance learning at the University of New Hampshire. The proposal was submitted to the governing body overseeing state-funded higher education (USNH), and it laid out a plan for the partnering of all state organizations involved with distance education. This proposal was not endorsed by USNH.

University of New Hampshire Outreach Scholars Program (AY05): The Outreach Scholars Program is a faculty development initiative specifically designed to advance the University's academic strategic plan with a specific focus on outreach scholarship and engagement. The goals of this program include the development of mutually beneficial collaborative partnerships between faculty, extension educators, staff (New Hampshire Public Television, Office of Outreach Education), students and external partners with a specific focus on outreach scholarship and engagement.

Board of Trustees for the Great Bay Charter School (2003- 2013): This charter school, which began in Fall 2005) is affiliated with the Exeter School district and was initially targeted towards high-school students at risk. As such, emphasis is placed on project-based learning and electronically mediated learning. In addition to the normal functions performed by a Board of Trustees, the Great Bay Board provides oversight on the appropriate uses of technology in teaching. Experience with this type of education has shown that its positive effect is not limited only to students at risk.

Chair, Virtual Learning Academy Charter School (VLACS) Board of Trustees (January 2008-present): VLACS is a state-run, online charter school that provides an alternate means for New Hampshire junior high and high school students to obtain credits towards graduation. Major challenges for the Board have been to scale for rapidly increasing demand as well as to contend with a changing political/funding landscape.

Division of Continuing Education (DCE) Strategic Planning Group (AY04): This group of administrators, faculty and DCE staff met regularly throughout the year to develop a plan to reduce and redefine the scope of DCE so that it would be sustainable. That plan realigned the three main programmatic areas of DCE (Noncredit Programming and Marketing, Professional Development and Training, and Interhostel and Familyhostel) with other UNH entities in order to capitalize on synergies and best use limited resources.

New Hampshire Technology Council (AY04-05): The Council was an advisory group to the NH Department of Education regarding implementation of the State Educational Technology Plan. This assistance to the Department's Office of Educational Technology included developing policy guidelines to foster effective statewide technology integration, pursuing funding opportunities, designing infrastructure, identifying and disseminating information and resources, enlisting private sector support, and evaluating progress toward the vision of effective technology integration.

Seacoast Professional Development Center (SPDC) Advisory Board (Fall 02-10): the SPDC was created with funds from the *No Child Left Behind* grant, and the purpose of the center is to provide schoolteachers in the Seacoast region with training that will enable them to perform their jobs more effectively. The major duties of the Advisory Board are to evaluate assessment data on ongoing efforts and to make recommendations regarding future initiatives.

Faculty Instructional Technology Development Grant Committee (AY00-05): The primary responsibility of this committee was to evaluate proposals submitted to the grant program, which focuses on improving student learning experiences through the use of information technology.

Task Force on the Undergraduate Experience (AY02-03): This task force was charged with exploring ways to improve the undergraduate experience, particularly in the freshman year. The objective of the committee was to make recommendations about how the experience could be

improved, and measures that should be undertaken to bring about those improvements. A conclusion reached by the task force in its first year was that the freshman year experience could be enhanced by a series of inquiry courses. In an effort to bring these courses to fruition, the task force worked on defining those courses, including budgetary information, during its second year. After obtaining a go-ahead from the Provost office, requests for proposals for inquiry courses were distributed. Upon receiving the proposals, the task force evaluated them and made recommendations as to which one should be adopted.

Task Force on Network Security (Chair AY02): The purpose of the task force was to provide guidance to the President in shaping a policy that balances privacy with the need to increase network security. The result of Task Force efforts, performed in conjunction with the Faculty Senate, was a report that outlines acceptable boundaries between security and privacy.

Academic Computing Advisory Committee (Chair, AY00-02): This committee was advisory to the President and Provost and focused on the centrality of computing to UNH's teaching, research and public service missions. The committee represented all parts of the community and included faculty representatives from each college, including UNHM. The committee was charged with the development of short-term goals and long-range plans for academic and research computing at UNH, including all aspects of instructional and informational technology. The responsibility of the Chair of this committee was to facilitate liaison between university administration, faculty, and students on issues relating to the use of technology, and then to garner consensus on technology policy within the formal committee. The recommendations of this committee were and are used to determine how technology funds are spent on campus.

Faculty Fellow in CEPS to Direct a Distance Learning Pilot Program (Fall 97- Present (unofficial)): This position, which initially included release time support, entails all aspects of the execution of pilot courses over the Internet. The duties associated with this position include:

- The selection and purchase of course delivery hardware and software
- Working with CIS support staff to maintain software and equipment
- Developing courseware for remote course delivery
- Providing training and support for other participating faculty
- Marketing distance education courses
- Writing proposals to obtain outside funding for distance education initiatives. Funding obtained from one such proposal enabled the development of a classroom that is being used for simultaneous delivery to on-campus and off-campus students.
- Writing a strategic plan for CEPS use of distance education

New Hampshire Distance Learning Commission (appointed by Governor Shaheen in September 1999): This commission was charged with coordinating and promoting distance education initiatives throughout the state. The commission met regularly to identify means for working with industries, businesses and schools to make distance education an affordable reality in New Hampshire. There were fifteen other members of this commission, representing constituencies ranging from industry and business to government agencies and schools.

College Entrepreneurial Campus Committee (Fall 96- Spring 98): This committee acted as a steering committee in the planning of a UNH-affiliated enterprise facility on campus. This committee was comprised of two Deans, the Vice President for Research, the Directors of Research Computing and the Industrial Research Center, the Executive Director of Pease Development, and six faculty members. This committee established and coordinated the efforts of three subcommittees.

College Academic/Industry Alliance Subcommittee of the Entrepreneurial Campus Committee (Fall 96- Spring 98): The charge of this subcommittee was to look at the nature of University faculty, staff, and student involvement with the Entrepreneurial Campus. This committee was comprised of five faculty members and one Dean. Its primary mission was to develop criteria for academic and industrial alliances that would ensure success in a research-based economic development program.

College Facilities Subcommittee of the Entrepreneurial Campus Committee (Fall 1996- Spring 98): The charge of this subcommittee was to estimate the nature and size of the space that would be needed in the envisioned Entrepreneurial Campus. One facet of the subcommittee's work was to assess the space needs in each of the CEPS departments.

Coach and Advisor for the UNH Karate Club (AY88 through AY00 except for sabbatical year): Coaching responsibilities entailed teaching one or two classes per week, as well as participating in tournament judging and belt testing. Advising duties included maintaining class rosters, promotion records, travel arrangements, finances in addition to overseeing routine club activities and budgets.

University Distance Education Committee (AY97-98 through AY99-00): This committee was concerned with distance learning from a university-wide perspective. The committee explored ways in which the University might better serve the State by offering different education delivery methods. This committee became a subcommittee of the Academic Computing Advisory Committee.

Special Commission on the Budget Deficit (Fall 1995): Because of uncertainty regarding the magnitude of the projected budget deficit in fiscal year 97, the former Chairs of the Academic Senate Budget and Planning Committee were convened in the Fall semester to target the amount of that deficit. The primary duties of Commission members were to analyze the budget, contact individuals throughout the University to assess the expected shortfall in their particular areas, and then to aid in writing the final report that was presented to the University community.

College Freshman Calculus Committee (AY96): Reports of poor performance in follow-on courses, and concerns regarding retention, prompted a reevaluation of the manner in which freshman calculus was taught at UNH. The freshman calculus committee explored a variety of options and made recommendations that led to the creation of the Studio Physics/Calculus course as well as other changes.

University Budget and Planning Committee (Spring 89- Spring 93; Chair AY 92-93): The Budget and Planning Committee was formed by the Academic Senate to provide oversight of the University budget and to make recommendations regarding University planning issues. Gaining information regarding the budget in sufficient depth to make meaningful recommendations was achieved through frequent meetings with Trustees, the President and Vice-Presidents, Deans, and

other constituencies. Committee recommendations were disseminated to the University community through open forums and regular presentations in the Academic Senate. Committee members, particularly the Chair, participated in a wide range of university committees, as documented below.

Space Allocation/R&R Committee (non-voting member AY92-93): This committee, which was comprised of the University Vice-Presidents, was charged with making final decisions regarding all building initiatives, swing space, space allocation, renovations, leases, handicap access, and toxic waste.

UNH Planning Council (Fall 91- Spring 93): Formerly the Task Force on the Reallocation of Resources, this council included the full complement of Vice President and Academic Deans, and was tasked with providing both short and long-range visions for the University. Those visions translated into recommendations for the distribution of funds on campus, and it was formed by in-depth analyses of every department, both academic and non-academic, on campus.

President's Cabinet (AY 92): The eighteen-member President's Cabinet met weekly to discuss issues of general interest to the University Community. The issues discussed ranged from the volume of the bells in Thompson Hall, to diversity, to University policy. The objective of the cabinet was to serve as a focus group for then-President Dale Nitzschke.

Academic/Faculty Senate (AY92-93 and AY10-11): Served as representative of the Electrical & Computer Engineering Department and Chair of the Budget & Planning Committee.

Accreditation Steering Committee (AY92-93): This group provided guidance in the generation of the documents supporting UNH's ten-year accreditation effort. This steering committee established task forces to address each of the major topics relating to accreditation, and then combined the reports from those task forces into a single document. Accreditation was awarded as a result of the report.

Accreditation Task Force for Standard Two, Planning and Evaluation (Chair): It was the responsibility of this task force to write the part of the accreditation self-study that dealt with the university's progress in planning and evaluation since the last accreditation effort. This part of the report described planning and evaluation as it pertained to coping with budget rescission, academic programs, finance, and the physical plant.

Accreditation Task Force for Standard Nine, Financial Resources: This task force was responsible for writing the part of the accreditation self-study that dealt with financial resources, stability, reporting, and planning. The task force was chaired by the Vice President for Finance.

Faculty Observer: Trustees' Academic Affairs Committee (AY92-93): This trustee committee has the responsibility to approve or deny changes in any academic programs, to evaluate class access, to provide honorary degrees, and to look at promotion and tenure issues.

Task Force on the Reallocation of Resources (Spring 89- Spring 91): This task force was initiated by the Budget and Planning Committee and was put in place by the President to define a plan for addressing the budget deficits. This 13-member committee (which included five faculty, two Deans, one PAT, and five administrators) was charged with evaluating every department and office on campus, both academic and nonacademic, and then making recommendation as to the amount of cuts each could sustain while minimizing the negative impact to the University as a whole.

Department Industrial Associates Program (IAP): Committee (regular participant and presenter): The IAP offers a means by which local industry can advise and support the Department of Electrical & Computer Engineering. The IAP committee provides liaison with the participating companies and organizes the annual meeting.

University Advising Center Advisor (AY88- 89): The UAC is set up primarily to advise undeclared students across campus, and to give them insights into particular majors. The UAC serves many students who have been readmitted to UNH after having been removed due to poor academic performance.