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Abstract
Autism and autism spectrum disorders are enigmatic conditions that have their origins in the
interaction of genes and environmental factors. In this hypothesis, genes statistically associated
with autism are emphasized to be important in inflammation and in innate immune pathways,
including pathways for susceptibility to asthma. The role of acetaminophen (paracetamol) in an
increased risk for asthma is described and a possible similar link to an increased risk for autism is
suggested.
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Introduction
Autism is a complex and heterogeneous disorder, and the etiology is unknown. Although
numerous theories of early initiating events in the development of autism have been
proposed, two areas of active scientific interest are immune dysregulation and genetic
predisposition. In this report we compare immune and genetic aspects of autism. We then
describe acetaminophen's link to asthma and suggest a link with acetaminophen to immune
anomalies in autism.

Immune and inflammatory observations in autism
There are an increasing number of reports that anomalies in the immune system may play a
role in autism. This has been found at the molecular, pathological, and epidemiological
level. Altered levels of immunoglobulins 1-3, cytokines4 and, inflammatory markers have
been identified in the serum5, cerebral spinal fluid6, and autopsy brain tissues2 of autistic
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patients. Gastrointestinal inflammation in autism7 as well as pathological evidence of
neuroinflammation involving activation of brain microglia has been shown8. An increase in
head circumference in autistic children9, a consistent finding in autism, may involve
neuroinflammation. Abnormalities in macrophages8,10 and mast cells in autism have also
been noted11. Differential monocyte responses to Toll-like receptors have been found in
children with autism spectrum disorders suggesting involvement of innate immune
pathways12 Interestingly, activation of TLR2 has been shown to inhibit embryonic neural
progenitor cell proliferation resulting in cortical dysgenesis in vitro and in utero in a mouse
model (unpublished).

In addition, epidemiological evidence of immune involvement has been shown through an
increased frequency of autoimmune disorders in family members of autistic patients13-15.
Comparisons to early events between childhood asthma and autism have been suggested,
including an increase in head circumference and male preponderance, among others16. There
is no evidence of T cell mediated autoimmune tissue destruction as found in classical
autoimmune disorders. Immune involvement in autism has recently been reviewed17-19.
Interestingly, alterations in fever have been hypothesized to be involved in the etiology of
autism20 and fever has recently been shown to transiently improve both behavior and
language in autistic patients21. Also, low levels of breastfeeding could decrease immune
protection in infants by decreasing mother to child transfer of IgA. Breastfeeding has been
linked to autism risk in the authors' previous work22.

Genes implicated in autism and asthma: macrophages, mast cells, and innate immunity
Although autism has been shown to be highly heritable, the genetic underpinnings of autism
are complex and unclear2123. The relationship of genetic findings to the etiology,
pathobiology, disease incidence in the population, or clinical course of the disease is obscure
and speculative. While several important genes identified in genetic association studies in
autism are often discussed in the context of synaptogenesis and brain development, a
number of these autism candidate genes are central to the genetics or immunobiology of
inflammatory disorders, including asthma and macrophage or mast cell dysfunction23, 24

These genes include PTEN25,26, MET23,27, SERPINE128, PLAUR29,30, ITGB330,31,
ADRB2 32,33 and MIF34-36.

PTEN, phosphatase and tensin homolog, is an important regulatory checkpoint in the
inhibition of the PI3K/Akt/mTOR pathway24 which is central to innate immunity as well as
mast cell25 and macrophage biology26. PTEN has been associated with autism spectrum
disorders and macrocephaly27 and autism related phenotypes in a mouse model28.

MET, the met proto-oncogene also known as hepatocyte growth factor receptor, has been
associated with autism in multiple studies2930. MET has also been shown to be a regulator
of mast-cell activation as a co-receptor with α2β1 integrin31. In addition, both SERPINE1
and PLAUR, two genes involved in the MET signaling cascade and in the fibrinolytic
system, have both been genetically associated with autism32 and asthma33. Both PLAUR
(uPAR) and SERPINE1 (PAI-1) have been shown to be highly expressed in macrophages,
activated brain microglia34, as well as in mast cells 35. Both PLAUR and SERPINE1 may
play an important role in the pathogenesis of asthma36,37.

Integrin beta 3 (ITGB3) on chromosome 17 codes for a cell surface molecule involved in
cell-surface mediated signaling and cell adhesion. Polymorphisms in ITGB3 have been
associated with multiple disorders including autism38 and asthma33,39 in genetic association
studies. ITGB3 (CD61) is found on the surface of mast cells where it is involved in binding
vitronectin and mast cell activation40,41 and cell signaling in macrophages42.
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ADRB2, the beta-2 adrenergic receptor, is a G protein-coupled receptor that is expressed
ubiquitously and influences many pathological states including asthma, obesity and Type 2
diabetes. The Glu27 allele of ADRB2 been associated with autism43 in the AGRE44 cohort
as well as in dizygotic twins45. This polymorphism of ADRB2 is also associated with asthma
disease severity and drug response46.

MIF, or macrophage migration inhibitory factor, codes for a cytokine involved in
immunoregulation and inflammation47 in T lymphocytes, pituitary cells, astrocytes,
macrophages, smooth muscles cells, endothelial cells, and mast cells48. Polymorphisms in
the promoter of MIF have recently been associated with autism spectrum disorders49, as
well as in allergic asthma50, and have been shown to be required for allergic inflammation in
a mouse model of asthma50. In addition, polymorphisms in MIF have been associated with
Hereditary Periodic Fever (HPF) syndromes as well as regulating serum MIF
concentrations51. Interestingly, in all three cases, autism, asthma, and HPF, the – 173G/C
promoter polymorphism which alters levels of MIF gene transcription was an associated
allele. Importantly, the metabolite of acetaminophen, N-acetyl-p-benzoquinone imine
(NAPQI), inhibits the isomerase and the biological activities of MIF52.

The genes described above having been commonly identified in autism, asthma, and
inflammation suggests an overlap in genetic susceptibility factors between these disorders.
This raises the possibility that environmental factors acting through gene-environment
interactions may act in similar ways in both disorders.

Acetaminophen
Acetaminophen (paracetamol) is a widely used over-the-counter pain reliever and fever
reducer (antipyretic) that was introduced in the US in 1955 2256. Acetaminophen largely
replaced aspirin for the treatment of pediatric fever after the CDC advisory in 1980 to
physicians and parents regarding an association between aspirin and Reye's syndrome.
Acetaminophen overdose is a leading cause of hepatotoxicity and acute liver failure.
Activation of liver Kupfer cells (phagocytic macrophages of the liver) by acetaminophen
metabolites have been shown to activate cytokines and alter innate immunity in liver
injury53. Acetaminophen has been suggested to alter the Th1/Th2 cytokine balance in
acetaminophen induced liver injury54 and to act through TLR455 and TLR9 56. In addition,
acetaminophen has recently been shown to alter protein levels and phosphorylation of PTEN
and S-nitrosylated Akt in a chronic rat model of muscle aging57.

Most importantly, acetaminophen use in the first year of life has been strongly associated
with a later increased risk of asthma, and related phenotypes of asthma58. This association
was recently found to have a dose dependent risk of childhood asthma, rhinoconjuctivitis,
and ezcema in children aged 6-7 years, in a large multinational study 59. Moreover,
increased risk of asthma due to acetaminophen use in late pregnancy has also been shown60.
The exact molecular mechanism of this increased risk of asthma and allergic disorders due
to acetaminophen use is not known 61, although mechanistic theories include alterations in
glutathione levels, effects on serotonin, suppression of COX2, and specific effects of
acetaminophen breakdown products 62 such as NAPQI. Importantly, acetaminophen use
after MMR vaccination has recently been associated with autism in a small case controlled
study63; this association was not seen with ibuprofen.

Moreover, acetaminophen affects glutathione levels as well as pathways involved in
transsulfuration. Glutathione metabolism is fundamental to many biological processes and
alterations in glutathione homeostasis are implicated in numerous human diseases including
immune and inflammatory disorders64. Polymorphisms in glutathione pathways have been
associated with both autism and inflammatory disorders64-67. Glutathione reductase has
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been shown to be inhibited through acetaminophen-glutathione conjugates68. The
transsulfuration pathway converts cysteine to homocysteine through the intermediate
cystathione. Transsulfation metabolism has been shown to be altered in children with
autism69 and parents of children with autism70.

Interesting inflections in disease prevalence curves
Numerous studies have attempted to measure the prevalence of autism and asthma in the
population71-73. Both asthma and autism have had a similar apparent rise in the number of
cases since approximately 1980, over the past 30 years, and in both disorders these have
been repeatedly referred to as “epidemics”. In autism, this apparent rise in cases is highly
controversial74 and may be whole or in part due to increased disease awareness and/or
expansion and reclassification of diagnostic criteria.

The following discussion is not intended to judge the validity of disease prevalence studies
in asthma or autism; it is simply to point out interesting minor anomalies in those curves. In
disease prevalence curves of both autism and asthma in the US, the sharp rise in cases began
in approximately 1980. In the period from 1980 to 1990 there were two slight downturns in
the slope of the curves, after 1982 and after 1986. Both curves continue markedly upward
after 1988 into the 1990s (see Figures 1 and 2). In addition, there are similar slight
downturns in slopes of the curves at the same times from independent and geographically
disparate studies in both asthma and autism including; hospitalizations75, autism cases in
Minnesota76, autism in north east London77, and autism in an urban area in Sweden78 (see
supplemental figures 1-4).

Four significant events related to acetaminophen use occurred between 1980 and 1990. The
first was the CDC caution in 1980 concerning the relationship of aspirin to the risk of Reyes
Syndrome which was followed by a public and professional warning by the United States
Surgeon General regarding a possible Reyes Syndrome-aspirin association79. These cautions
against the use of aspirin as a fever reducer in children were largely responsible for the
replacement of aspirin by acetaminophen as a pediatric antipyretic80.

In 1982 and again in 1986 there were product tampering cases where acetaminophen tablets
were laced with cyanide resulting in eight deaths. Acetaminophen sales collapsed after each
tampering event, but recovered in less than a year in each case81-83. These dates roughly
correspond to the slight downturns in asthma and autism cases mentioned above.

Hypothesis
The discussion above provides multiple lines of evidence for overlap in genetic
susceptibility, molecular pathways, and other features associated with early preclinical
etiological events in autism and asthma. A number of these features including biological,
genetic, and epidemiological evidence may converge in aspects of inflammation or innate
immunity, often involving macrophages or mast cells.

There is strong epidemiological evidence that acetaminophen use in late pregnancy and/or in
the first year of life increases the risk of subsequently acquiring childhood asthma and
related allergic disorders. This may be due to direct effects on immunological pathways or
secondary effects such as through alterations in blood serotonin, glutathione, or
transsulfuration. Fever has been shown to have a modifying effect on behaviors in autism,
and acetaminophen is widely used to treat childhood fever as well as symptoms associated
with childhood infections and childhood vaccines. Acetaminophen use has been shown to be
associated with autism in a preliminary study63.
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It is proposed that widespread use of acetaminophen in late pregnancy or early childhood
may significantly alter subtle immune processes, through direct or indirect mechanisms,
increasing the risk for autism. It is suggested that a large scale population based
epidemiological study be conducted to determine the role, if any, of acetaminophen in the
risk for autism.

Limitations
No evidence is presented here that acetaminophen in any way causes autism. Readers of this
hypothesis should not conclude that acetaminophen is central to the etiology of autism or
speculate beyond what is presented here. This hypothesis is largely based on multiple lines
of often weak evidence. It is hoped that further research can clearly strengthen or disprove
the ideas presented here.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Number of enrolled persons with autism in California by year of birth* with addition of
events in the history of acetaminophen. The post-1982 and post-1986 downward inflections
are circled.
*Adapted from: Changes in the population of persons with autism and pervasive
developmental disorders in California's developmental services system: 1987 through 1998.
A report to the legislature (DDS, 1999). Figure 1, page 8. Available at:
http://www.dds.cahwnet.gov/Autism/docs/autism_report_1999.pdf
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Figure 2.
Asthma prevalence in US children 0-17 years, 1980-2007. The post-1982 and post-1986
downward inflections are circled.
Adapted from: US EPA-Report on the environment. Exibit 5-31 Asthma prevalence in US
children 0-17 years, 1980-2007 84; Adapted from Akimbami, 2006; NCHS, 2007b; NCHS,
2008.
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