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against the fusion protein that exists in a metastable prefusion con-
formation before virus entry into host cells, which changes to a 
postfusion form upon host cell receptor engagement. The postfusion 
state is the predominant conformation after formalin inactivation 
(13). In the FI-RSV clinical trials, neutralizing antibodies were in-
duced by the vaccine in fewer children (43%; 10 of 23) than after 
natural infection (75%; 12 of 16) (12). Although 14 of 15 vaccinees 
who developed RSV disease had neutralizing antibodies at the onset 
of illness (12), later studies indicated that vaccinees had a higher 
ratio of fusion protein binding antibodies than RSV neutralizing 
antibodies compared with controls with natural RSV infection (14). 
Later animal studies also showed that the FI-RSV lot used in the 
clinical studies failed to elicit neutralizing antibodies in cotton 
rats and that the animals developed more severe lung pathology 
upon RSV challenge than did mock vaccinated animals (15). How-

ever, understanding immunological cor-
relates of protection in the vaccinated 
children was limited because the only 
assay to measure T cell immunity was 
lymphocyte transformation, which did 
not allow the assessment of antigen 
specificity, cytokine profiles, or cyto-
toxic functions of T cells induced by 
FI-RSV. Pathologically, the two infants 
with fatal infections had severe alveoli-
tis with neutrophilic and lymphocytic 
infiltrates and peribronchial inflamma-
tion (16) as well as evidence of immune 
complex formation in lung tissues (17). 
Potential mechanisms of VAED sug-
gested by these studies of children given 
the FI-RSV vaccine include antibodies 
directed against nonprotective fusion 
protein epitopes, a failure to elicit high-
avidity neutralizing antibodies to RSV 
fusion protein, aberrant antibody responses 
to other RSV proteins, activation of the 
complement pathway by immune com-
plex deposition, and abnormal T cell re-
sponses (Fig. 1). Animal model studies 
support other potential factors including 
a bias toward T helper type 2 (TH2) cell 
cytokine responses, a lack of antibody 
affinity maturation that may occur in 
young children because of several puta-
tive mechanisms, including poor Toll-like 
receptor stimulation (18), insufficient 
regulatory T cell activity, and poor prim-
ing of cytotoxic T cells (19). Without a 
defined mechanism for VAED due to 
FI-RSV, the recent Vaccines and Related 
Biological Products Advisory Committee 
report concluded that “In the absence 
of a reliable method for differentiating 
between enhanced respiratory disease 
and severe RSV infection, identifica-
tion of possible vaccine-associated en-
hanced respiratory disease will likely 
rest on detecting a significant differ-

ence in rates of severe RSV disease between vaccine and control 
groups” (19).

A formalin-inactivated measles virus vaccine licensed in the 1960s 
was withdrawn because some immunized children developed atypical 
measles with high fever, an unusual petechial/papular rash, and 
atypical pneumonia (20). Measles neutralizing antibodies persisted 
in only 25% of immunized children at 1 year of age, and 8 of 125 
vaccinees developed atypical measles after a known exposure two or 
more years later (20). When live attenuated measles virus was given 
after formalin-inactivated measles virus, papular lesions that showed 
immune complex deposition appeared at the inoculation site. In 
contrast, the live attenuated measles virus vaccine has high protec-
tive efficacy with no enhanced disease (21).

Dengue infections are caused by one of the four related dengue 
virus serotypes. Rarely, these viruses cause dengue hemorrhagic 
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Fig. 1. Immune enhancement of human viral disease. Immune enhancement of human viral disease through viral 
reinfection or vaccination has been documented in (top) natural dengue virus infection and (bottom) vaccination 
with a formalin-inactivated vaccine for RSV. (Top) During natural dengue virus infection, IgG antibodies protect 
against dengue virus of one serotype by causing uptake of virus particles and their degradation when the Fab fragment 
of IgG binds to a surface viral protein and the Fc portion of IgG binds to Fc receptors expressed by macrophages and 
other immune cells. A second infection with a different dengue virus serotype creates a risk of ADE of disease because 
cross-reactive antibodies against the first serotype that have limited neutralizing capacity can mediate internalization 
of the virus by Fc receptor–bearing cells. Viral immune evasion mechanisms then allow the production and release 
of new virions. (Bottom) Vaccine-associated enhancement of disease (VAED) occurred in some children given a for-
malin-inactivated RSV vaccine in the 1960s. Although the immunological mechanisms of VAED remain undefined, 
fatal RSV infection occurred in two children after vaccination and was associated with complement activation. 
This was attributed to the formation of immune complexes and their deposition in the lungs, and peribronchiolitis 
and alveolitis associated with pulmonary infiltration by neutrophils and eosinophils, which is consistent with a 
TH2-biased CD4+ T cell response. To date, none of these mechanisms are known to apply to SARS-CoV-2 infection.
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fever/shock syndrome, which can occur with primary infection but 
also when a person who had a prior infection becomes infected with 
another serotype (22). Although immunity from a previous infec-
tion can provide protection, enhancement of disease severity under 
these circumstances has been suggested to be mediated by ADE, 
based on in vitro observations. In cell culture, antibodies against 
dengue virus that bind to virus particles and cells of the immune 
system (macrophages, monocytes, or dendritic cells) that express 
receptors for the Fc portion of the antibody provide an alternate 
pathway for virus entry, in addition to binding and entry via the 
specific viral receptor (Fig. 1). Whereas antibody-mediated entry of 
host cells results in destruction of most viruses, dengue viruses can 
replicate after entry through this pathway. Thus, ADE of dengue 
disease can occur during a second infection with a different virus 
serotype due to cross-reactive antibodies with suboptimal neutralizing 
capacity against the newly incoming virus, in combination with the 
Fc-mediated targeting of immune cells by the virus. ADE of dengue 
disease has been reported to have a 0.5% attack rate (36 of 6684), 
where it was associated with a narrow range of neutralizing anti-
body titers (1:20 to 1:80) at the time of infection (23).

A potential enhancing effect of preexisting dengue antibodies 
was also raised as a concern in clinical trials of the quadrivalent live 
attenuated dengue vaccine, Dengvaxia (Sanofi Pasteur), where im-
munization of dengue-naïve 2- to 8-year-old children correlated 
with a lower risk of severe disease for 2 years, but subsequent hospi-
talization rates were higher in vaccinees than in placebo recipients 
in the third year (24). It was not established whether the higher hos-
pitalization rates resulted from an undefined age-related factor, failure 
to protect against infection with particular serotypes, cross-reactive 
antibodies, limited cell-mediated immunity, or a combination of 
factors. After licensure, 15 deaths from dengue disease were reported 
in 9- to 13-year-old children in the Philippines (where >830,000 
children received one dose and >365,000 received all three doses), 
and 14 of the deaths were investigated by the WHO Global Advisory 
Committee on Vaccine Safety. Their conclusion was that individual 
cases could not be attributed to vaccine failure or vaccine-related 
immune enhancement because there were no criteria to differentiate 
the two (25). On the basis of protective efficacy, Dengvaxia is now 
recommended for dengue seropositive individuals >9 years old where 
dengue is prevalent.

Experience with other viral infections and viral vaccines
Despite the high antigenic diversity and prevalence of influenza virus-
es, extensive annual surveillance has not revealed correlations between 
more severe illnesses and preexisting immunity. When an antigenic 
shift caused the 2009 H1N1 pandemic, a cohort of middle-aged pa-
tients was reported to have low-avidity antibodies against the H1N1-
2009 virus, and six people in this age group with fatal pneumonia had 
evidence of pulmonary immune complex formation (26). Thus, de-
cades of surveillance suggest that immune enhancement of natural 
influenza virus infection is rare despite the prevalence of cross-reactive 
antibodies with limited neutralizing activity. In addition, influenza im-
munization programs demonstrate that inactivated vaccines per se do 
not potentiate the risk of VAED, even though vaccine antigens used to 
induce immunity may not be matched to the influenza viruses that 
emerge (27). Whereas some epidemiological studies of the 2009 H1N1 
pandemic reported more medically attended illnesses among vacci-
nated people (28), others supported vaccine efficacy (26, 29), partial 
protection, or infection but without evidence of VAED (30).

Although cross-reactive antibodies to parainfluenza viruses 1, 2, 
and 3 are elicited and the same individual is typically infected with 
the other virus serotypes over time, preexisting immunity is not 
known to result in severe disease due to a different parainfluenza 
virus serotype.

Infection by different rotavirus serotypes is another example of a 
circumstance where cross-reactive immunity typically provides some 
protection and does not potentiate disease. Inactivated vaccines, 
such as the polio vaccine, may induce less potent neutralizing anti-
bodies against one or more viral serotypes, but VAED has not been 
reported. Thus, vaccines made from inactivated viruses do not have 
an intrinsic potential to elicit deleterious immune responses.

Immune enhancement of disease in animal models 
of human coronaviruses
The outbreak of SARS caused by the SARS-CoV-1 coronavirus 
emerged in Southern China in 2002, and the Middle Eastern respi-
ratory syndrome (MERS) outbreak caused by MERS-CoV was first 
reported in Saudi Arabia in 2012. Although multiple animal models 
of SARS-CoV-1 and MERS-CoV infection and of the related corona-
virus SARS-CoV-2 have been developed, they do not fully recapitulate 
the pathology or clinical symptoms of severe coronavirus infections 
in humans. Some elements similar to human pulmonary disease can 
be observed in mice, hamsters and Syrian hamsters, ferrets, and non-
human primates. Animal models of SARS-CoV-2 infection have 
not shown evidence of VAED after immunization, whereas cellular 
immunopathology has been demonstrated after viral challenge in 
some animal models administered SARS-CoV-1 or MERS-CoV vac-
cines (Table 1). Whether cellular immunopathology is directly linked 
to VAED remains unclear as, in many cases, cellular pulmonary in-
filtrates are not associated with clear respiratory signs or illness. 
Whereas some in vitro experiments suggest the potential for ADE, their 
relationship to VAED in animal models has not been established.

 SARS-CoV-2 studies in rhesus macaques, African green ma-
caques, or cynomolgus macaques (31–36) have demonstrated acute, 
transient, and resolving interstitial pneumonia after virus inocula-
tion, but infection elicits mild to moderate pulmonary disease with 
no progression to respiratory failure or death, unlike COVID-19 in 
humans with severe illness (32). COVID-19 exhibits greater severity 
in older humans; two studies in small numbers of aged macaques have 
suggested greater pulmonary disease due to either SARS-CoV-1 (37) 
or SARS-CoV-2 infection (38) compared with young macaques. 
Similarly, modified SARS-CoV-1 induces more severe disease in aged 
versus young mice (39). However, whereas expression of angiotensin-
converting enzyme 2 (ACE2), the host cell receptor for SARS-
CoV-2, has been reported to be higher in the endothelium of aged 
compared with young cynomolgus macaques (40), humans exhibit 
an age-associated decline in ACE2 expression (41), indicating that 
factors beyond ACE2 are likely to be critical for disease severity.

In animal models of SARS-CoV-2 infection, rhesus macaques 
were found to be resistant to SARS-CoV-2 reinfection in two studies, 
and there was no evidence of enhanced disease from prior infection 
(31, 32). In one study, neutralizing antibody titers correlated with 
protection from reinfection with SARS-CoV-2 (32). Several COVID-19 
vaccines expressing the SARS-CoV-2 spike protein have now been 
tested in rhesus macaque SARS-CoV-2 challenge models. Vaccines 
tested include DNA vaccines (35), an inactivated virus vaccine with an 
alum adjuvant, an adenovirus vector vaccine (33), and a vaccine com-
prising mRNA encapsulated in lipid nanoparticles (42). Protective 
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efficacy has correlated with the titers of neutralizing antibodies against 
the spike protein (35), although analyses of T cell immunity are needed. 
SARS-CoV-2–infected macaques do develop some lung pathology, 
but they do not show clinical manifestations of COVID-19 or death; 
VAED or other evidence for immunopathology has not been observed 
after vaccination followed by SARS-CoV-2 challenge. Observations 
with SARS-CoV-1 and MERS-CoV vaccines also confirm that high 
titers of neutralizing antibodies against the spike protein correlate 
with protection from infection in ferrets and macaques (43–45).

In addition to evidence for protection, cellular infiltrates and im-
munopathology have been documented in some animal models of 
SARS-CoV-1 and MERS-CoV infection including mice, hamsters, 
rats, ferrets, and nonhuman primates (Table 1). Ferrets immunized 
with recombinant modified virus vaccinia Ankara (MVA) expressing 
SARS-CoV-1 spike protein followed by SARS-CoV-1 virus challenge 
developed cellular infiltrates in the liver and hepatitis (46). Cellular 
immunopathology was noted in BALB/c mice immunized with re-
combinant vaccinia virus expressing the SARS-CoV-2 spike protein 
or the nucleocapsid antigen, which was linked to increased production 
of proinflammatory cytokines, especially interleukin-6 (IL-6) (47). 
Cellular immunopathology was also observed in BALB/c mice im-
munized with Venezuelan equine encephalitis virus replicon particles 
expressing the nucleocapsid protein of SARS-CoV-1 (48).

In a SARS-CoV-1 infection and reinfection model in African 
green macaques, alveolitis and interstitial pneumonitis associated 
with dysregulated cellular inflammatory and cytokine responses were 
observed, but were unrelated to the presence of neutralizing anti-
bodies or evidence of protection (44). Rhesus macaques immunized 
with MVA vectors encoding the SARS-CoV-1 spike protein also 
exhibited cellular immunopathology upon virus challenge, which 
was associated with a combination of IL-8 production and fewer 
macrophages expressing markers associated with wound healing 
(45). In both studies, immunopathology occurred despite the pres-
ence of high titers of virus neutralizing antibodies (44, 45). VAED 
after SARS-CoV-1 vaccination has been suggested to be associated 
with vaccine-induced TH17 host responses, including extravasation 
of eosinophils from the bone marrow and infiltration of tissues 
(5, 49). Thus, the evidence suggests a potential role of TH17 in corona-
virus infections that differs from immune enhancement of disease 
due to the FI-RSV vaccine or dengue virus infection (Fig. 1).

SARS-CoV-1 vaccines comprising inactivated whole virus (with 
virus inactivation by formalin or ultraviolet irradiation), recombi-

nant spike protein (expressed in baculovirus), or chimeric viral-like 
particles have elicited cellular immunopathology when administered 
to mice despite the presence of high titers of neutralizing antibodies 
(50). In these studies, an alum adjuvant was shown to reduce immuno-
pathology compared with nonadjuvanted vaccines, a finding con-
firmed in mouse immunization experiments with the SARS-CoV-1 
spike protein receptor binding domain formulated with alum (51). 
Other studies have highlighted the importance of inducing TH1 re-
sponses and CD8+ T cells after vaccination of mice as a means to 
enhance protective immunity and prevent cellular immunopathology 
(45, 52–54). When MERS-CoV vaccines were tested in nonhuman 
primates including a DNA vaccine (55), a MERS-CoV spike protein 
receptor binding domain subunit vaccine with alum adjuvant, a spike 
protein subunit vaccine with Ribi adjuvant (56, 57), or an adenovirus 
vector vaccine expressing MERS-CoV spike protein, no lung immuno-
pathology or VAED was observed after challenge with MERS-CoV.

Certain antibodies against the spike protein have been shown to 
enhance the uptake of SARS-CoV via immunoglobulin G (IgG) 
binding to FcRII receptors expressed by cells in vitro (48, 58–60). 
For these studies, fluorescence microscopy and real-time quantitative 
reverse transcriptase polymerase chain reaction were used to mea-
sure infection of cells in vitro, rather than measuring the capacity of 
live viruses or pseudoviruses to replicate and produce more viruses 
in these cells. In vitro studies have shown ADE after infection of 
cultured cells with MERS-CoV or feline infectious peritonitis virus, 
an animal coronavirus (61, 62). For feline infectious peritonitis virus, 
serum antibodies can coincide with disease onset in cats, but disease 
may also arise due to mutations in the 3c gene of nonpathogenic 
feline enteric coronaviruses, leading to increased replication and trans-
mission in the feline gut (61). In the case of MERS-CoV, one in vitro 
study showed that neutralizing antibodies that bound to the spike 
protein triggered a conformational change that facilitated virus entry 
into IgG Fc receptor–expressing cells (62). In a rabbit model of 
MERS-CoV, ADE was associated with non-neutralizing antibodies 
in addition to complement activation and other factors, but did not 
translate into clinically observable disease (58–60, 62, 63). An inac-
tivated whole-virus MERS-CoV vaccine elicited eosinophilic im-
munopathology and, potentially, ADE in mice that were linked to 
neutralizing antibodies (64). Similarly, in a SARS-CoV-1 challenge model 
in African green macaques, lung immunopathology was unrelated 
to preexisting neutralizing antibodies (44), as was the case for a whole 
inactivated virus vaccine and other SARS-CoV-1 vaccines in mice (50).

Table 1. Immune enhancement of coronavirus disease in animal models.  

Virus Infection or vaccine Animal model
Immune enhancement 

of disease after 
virus exposure

Virus neutralizing 
antibody (VNA) titers Reference Notes

SARS-CoV-2

Infection with live virus Rhesus macaques No

83–197 by the 
pseudovirus 

neutralization assay; 
35–326 by the live virus 

neutralization assay

(31, 32) After virus reinfection

DNA vaccine Rhesus macaques No Median titer, 74 (35)

Inactivated virus vaccine 
with alum Rhesus macaques No 145–400 (5, 34)

Adenovirus vector 
vaccine Rhesus macaques No 5–40 (33)

continued on the next page

 by guest on N
ovem

ber 9, 2020
http://stm

.sciencem
ag.org/

D
ow

nloaded from
 

http://stm.sciencemag.org/


Haynes et al., Sci. Transl. Med. 12, eabe0948 (2020)     4 November 2020

S C I E N C E  T R A N S L A T I O N A L  M E D I C I N E  |  R E V I E W

5 of 12

Overall, the immunological mechanisms associated with cellular 
immunopathology in SARS-CoV and MER-CoV animal models are 
conflicting, with evidence pointing to both the protective and accel-
erating properties of TH2 responses and the possibility of pathogenic 

TH17-derived mechanisms (6). ADE of infection has been seen 
in vitro for SARS-CoV-1 and MERS-CoV, but it remains unclear 
whether VAED occurs in animal models administered MERS-CoV 
or SARS-CoV-1 vaccines.

Virus Infection or vaccine Animal model
Immune enhancement 

of disease after 
virus exposure

Virus neutralizing 
antibody (VNA) titers Reference Notes

SARS-CoV-1

Infection with live virus Ferrets No 720–800 U (43) After virus reinfection

Infection with live virus African green 
monkeys Yes 102–104 (44) After virus reinfection

Modified virus vaccinia 
Ankara (MVA) 
vector vaccine

Ferrets Yes
20–40 before 

challenge, up to 1280 
after challenge

(46, 125)
No neutralizing antibody 

in rMVA expressing N 
protein

MVA vector vaccine Chinese rhesus 
macaques Yes 103–104 (45) Immunopathology 

associated with IL-8

Recombinant 
vaccinia vaccine Mice Yes Not reported (47) Immunopathology 

associated with IL-6

Dendritic cell peptide 
immunization with or 

without a recombinant 
vaccinia virus booster

Mice No Not reported (52, 54)
Protection associated 

with CD8+ T cell 
responses

Venezuelan equine 
encephalitis replicon Mice Yes/no PRNT80100–1600 (48, 82)

Conflicting results 
implicating viral 
nucleoprotein

Inactivated virus vaccine Mice Yes

Geometric mean 
neutralizing antibody 

log27–10
(50, 53)

Immunopathology with 
unadjuvanted whole-
virus vaccine, despite 
protection; reduced 
immunopathology 

with alum
VNA detected after 

challenge only

Spike protein and spike 
protein receptor binding 
domain subunit vaccines

Mice

Yes (spike protein) Geometric mean 
neutralizing antibody 

log25–10

(50, 51, 53)

Conflicting results with 
spike protein (both 

reduced and enhanced 
with alum)

No (spike protein 
receptor binding 

domain)

Geometric mean 
neutralizing antibody 

log24–6 Reduced 
immunopathology with 
spike protein receptor 

binding domain with alum
VNA detected after 

challenge only

MERS-CoV

DNA vaccine Rhesus macaques No About 102 (55)

Spike protein (Ribi) and 
receptor binding domain 

subunit vaccines 
with alum

Rhesus macaques No Pseudovirus inhibition 
(PI)50 = 400–1200 (56, 57)

Spike protein formulated 
with Ribi; receptor 

binding domain 
formulated with alum

Adenovirus vector vaccine Rhesus macaques No Geometric mean titer 
up to 148

Infection with live virus New Zealand white 
rabbits Yes

Neutralizing 
antibodies associated 
with protection from 

viral infection and 
associated pathology

(63)

Immunopathology after 
virus reinfection 
associated with 

non-neutralizing 
antibodies, complement 

activation, and CD3+ T 
cells, but no clinically 
discernable disease

Inactivated virus vaccine Mice Yes Geometric mean titer 
log24–6 (64)

Eosinophilic pathology 
with both unadjuvanted 
vaccine or vaccine with 

alum or MF59
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Does immune enhancement of disease occur in human 
coronavirus infections?
There are seven CoV serotypes associated with disease in humans: 
four that cause the common cold (OC43, NL63, 229E, and HKU1) 
and three that are highly pathogenic (SARS-CoV-1, SARS-CoV-2, 
and MERS-CoV). Ninety percent of adults are seropositive for 
coronavirus strains causing the common cold (65). A clinical study 
where participants were experimentally infected twice, 1 year apart, 
with CoV 229E did not report enhanced disease; after the second 
exposure, the time during which virus was shed in nasal secretions 
was reduced, and there were no symptoms of disease (66). Both se-
rum and nasal IgA antibodies specific for CoV 229E were associated 
with a decreased period of nasal virus shedding (67). Immune en-
hancement of SARS-CoV-2 infection attributable to cross-reactive 
common cold CoV antibodies has not been reported so far. Rather, 
prior infection with common cold CoVs has been suggested to be 
either potentially protective by virtue of inducing antibodies that 
cross-react with the SARS-CoV-2 spike protein subunit S2 (68) or 
to be the source of SARS-CoV-2–reactive neutralizing antibodies 
that arose in a patient with SARS-CoV-1 who recovered from 
SARS-CoV-1 infection (69). Regarding T cell immunity to common 
cold CoVs, ~40 to 60% of individuals who have not been exposed to 
SARS-CoV-2 have SARS-CoV-2–reactive CD4+ T cells, suggesting 
that there is cross-reactive T cell recognition between common cold 
CoVs and SARS-CoV-2 (70, 71). So far, there is no direct evidence 
suggesting that preexisting immunity to common cold CoVs is det-
rimental to the outcome of SARS-CoV-2 infection.

Reports correlating antibody responses and disease severity are 
conflicting and confounded by higher viral loads and the potential 
for more immune stimulation with severe SARS-CoV-2 infection. 
Studies of MERS-CoV have shown increased neutralizing antibodies 
(72–74) or an increased duration of spike protein–binding antibody 
(75) in severe disease. Among 128 SARS-CoV-1–infected individuals, 
the amount of neutralizing antibodies was not associated with dis-
ease severity (76). However, one report suggested that increased 
antibody production correlated with increased respiratory failure in 
humans infected with SARS-CoV-1 (77). In contrast, another study 
showed no difference in time to seroconversion in SARS-CoV-1–
infected individuals who survived compared with those who died 
(78). The presence of SARS-CoV-1–specific IgG 10 days after onset 
of symptoms was associated with a decrease in nasopharyngeal viral 
load and with worsening of clinical disease in ~20% of individuals 
with respiratory failure requiring ventilator support (79). Use of a 
pseudovirus and a plaque reduction neutralization test (PRNT) assay to 
study acutely ill and recovered SARS-CoV-1–infected patients showed 
a decrease in viral load coincident with the time of seroconversion, 
suggesting that the neutralizing antibody response may play a role in 
clearance of virus (80, 81). In the setting of SARS-CoV-1 infection, it 
has been reported that CD4+ T cell responses correlated with positive 
outcomes in mice (82), but more severe disease in humans (76).

Tan et al. (83) have suggested that IgM and IgG against the 
SARS-CoV-2 nucleocapsid protein increased in patients with severe 
compared with mild COVID-19 disease. Systems analysis of sero-
logical signatures in COVID-19 disease revealed that functional anti-
body responses to SARS-CoV-2 nucleocapsid protein were elevated 
in those who died, whereas spike-specific antibody responses were 
enriched among convalescent individuals (84). A clinical study of 
175 patients with COVID-19 reported that higher serum neutralizing 
antibody titers may be associated with lower lymphocyte counts and 

higher C-reactive protein (85), but the amount of neutralizing anti-
bodies in severe compared with mild disease was not reported. 
Studies have reported higher SARS-CoV-2 neutralizing antibody 
titers in old compared with young patients with COVID-19 (85, 86). 
One study reported higher IgM and IgG antibodies against SARS-
CoV-2 spike and nucleocapsid proteins in patients with severe com-
pared with mild COVID-19 disease (87). A second study of mild 
versus severe COVID-19 disease in SARS-CoV-2–infected individuals 
demonstrated elevated serum IgA and IgG antibodies against virus 
spike protein associated with severe disease. In individuals who had 
recovered from SARS-CoV-2 infection, spike protein–specific CD4+ 
T cell responses correlated with the magnitude of IgG and IgA anti-
body titers against the spike protein receptor binding domain (71). 
The reason for higher anti-spike protein antibody responses in se-
vere COVID-19 disease is not clear, but may be due to higher viral 
loads in severe disease (88). Studies have demonstrated that the na-
sopharyngeal SARS-CoV-2 viral load was higher in elderly patients 
and in severe disease compared with mild disease (89, 90). However, 
in other studies, no association was found between nasopharyngeal 
viral load and disease severity (91).

Two studies involving reinfection of nonhuman primates with 
SARS-CoV-2 after a primary infection showed that the animals were 
resistant to reinfection with no evidence of enhanced disease (31, 32). 
Recently, one patient in the United States was reported to have a 
more severe clinical course when infected with SARS-CoV-2 a second 
time (92). While it is difficult to interpret data from a single case 
report, it will be important to monitor the frequency of repeat infec-
tions with SARS-CoV-2 and the clinical course of disease to deter-
mine if this finding is relevant more broadly.

Lung pathology in COVID-19 disease is characterized by diffuse 
alveolar damage, with hyaline membrane formation, pneumocyte 
desquamation, multinucleated giant cell formation, neutrophil or 
macrophage alveolar infiltrates, and viral infection of several cell 
types (7, 93, 94). Viral proteins can be detected in the upper airway 
and bronchiolar epithelium, submucosal gland epithelium and in 
type I and type II lung pneumocytes, alveolar macrophages, and the 
hyaline membranes of the lung (94).

In COVID-19, disease severity and death have been associated 
with higher amounts of inflammatory markers in the blood and in-
creased concentrations of serum inflammatory cytokines and chemo-
kines (95). Predictors of severe COVID-19 disease are emerging, with 
lymphopenia, elevated serum C-reactive protein, ferritin, and D-dimers, 
and high serum concentrations of IL-6, IL-10, interferon γ-induced 
protein-10 (IP-10)/CXC motif chemokine 10 (CXCL10), and tumor 
necrosis factor– (96, 97) in some patients (95, 97). Dysregulated 
cytokine induction has also been reported in acute respiratory dis-
tress syndrome in patients infected with SARS-CoV-1 or MERS-CoV 
(98–101). Recently, the similarity between acute respiratory distress 
syndrome associated with severe CoV respiratory infections and acute 
respiratory distress syndrome that occurs during immunotherapy 
with chimeric antigen receptor T cells has been pointed out (102).

What vaccine trials and convalescent plasma reveal about 
immune enhancement of disease
In phase 1 clinical trials, a MERS-CoV DNA vaccine was well tolerated 
(NCT03721718) (103) as was an MVA vector–spike protein vaccine 
(NCT03615911) (104). A chimp adenovirus vector (ChAdOx1) vac-
cine expressing the MERS-CoV spike protein did not result in any 
severe adverse events over a 12-month follow-up period in 24 trial 
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participants, and all mild or moderate adverse events resolved with-
in 6 days (NCT03399578) (105). Moreover, no evidence of immune 
enhancement of disease was noted in a clinical trial of an inactivated 
whole-virus SARS-CoV-1 vaccine (106) or a DNA vaccine expressing 
SARS-CoV-1 spike protein in 10 individuals (NCT00099463) (107). 
Infection was not reported after vaccination in any of these trials.

To date, five different phase 1 studies of vaccines against SARS-
CoV-2 have been published (NCT04368728, NCT04313127, 
NCT04324606, and NCT04283461) (108). Mild to moderate adverse 
events were commonly reported with low rates of severe adverse 
events (108–111). However, these early phase 1 trials are not suffi-
ciently powered to be able to definitively demonstrate that serious 
adverse events including VAED are not associated with COVID-19 
vaccines. Phase 3 efficacy trials for COVID-19 candidate vaccines 
have begun in regions of ongoing SARS-CoV-2 transmission, in-
cluding the United States, United Kingdom, South Africa, and Latin 
America. These phase 3 trials will follow participants for at least 
1 year to monitor efficacy outcomes and safety in the context of 
ongoing SARS-CoV-2 infection and will provide direct data for these 
vaccine candidates regarding disease enhancement after vaccination. 
Importantly, in phase 2 and 3 trials using the chimp adenovirus vector 
vaccine (ChimpAdOx-1), there have been early reports of two possible 
cases of inflammatory neurological disease (transverse myelitis) in 
trial participants, and this phase 3 trial has been paused in the United 
States at this time (112, 113).

Another approach for elucidating potential complications caused 
by neutralizing antibodies or other antibodies to SARS-CoV-2 
during ongoing infection is to determine whether administration of 
convalescent plasma from patients with COVID-19 enhances disease 
in recipients. Uncontrolled studies of convalescent plasma adminis-
tration to more than 35,000 severely ill patients with COVID-19 have 
shown that antibody administration in the form of plasma transfu-
sions is not associated with worsening of disease (114). A matched-
control trial of convalescent serum administration to 45 patients with 
COVID-19 demonstrated a decrease in oxygen supplement require-
ments and an overall survival benefit in the treated group compared 
with the untreated group (115, 116). Randomized controlled trials 
of convalescent serum treatment are underway (NCT04348656, 
NCT04342182, and NCT04338360). To date, there is no consistent 
evidence of immune enhancement of SARS-CoV-2 infection in humans 
from data from natural infection, various vaccine candidates, or 
convalescent plasma treatment.

Implications of immune enhancement of disease 
for vaccine development
A key question is why VAED is raised as a possibility for COVID-19 
vaccines. Fundamentally, this question should be asked of all vaccine 
candidates under development, despite the rarity of the phenomenon. 
If judged safe and effective by regulatory authorities based on efficacy 
clinical trials that could include up to 30,000 participants per trial, 
then COVID-19 vaccines could be made rapidly available to far 
larger numbers of people. Although determinations of vaccine safety 
and efficacy will be based on well-established requirements of regu-
latory authorities in the United States, the European Union, and 
other global regions, the capacity to produce and deliver millions of 
vaccine doses has been accelerated to gain control of the pandemic. 
As a result, many people may be vaccinated before longer-term follow-
up is possible. In addition, COVID-19 vaccines will be administered 
to older individuals who are naïve to this pathogen, whereas knowl-

edge about vaccine responses in this age group has often come from 
vaccines designed to boost waning immunity. However, age-related 
differences in immune responses are being evaluated in phase 3 
COVID-19 vaccine trials.

Given current knowledge, the main opportunity to identify 
whether a COVID-19 vaccine candidate has a risk of VAED will be 
in randomized, placebo-controlled phase 3 clinical trials. Whether 
and when such a risk would be identified in clinical trials depend on 
three important factors: (i) the frequency of VAED, (ii) the time 
interval after vaccination when VAED might occur, and (iii) whether 
the manifestation of VAED is distinct from natural disease of a similar 
severity. Currently, it is unknown whether there would be clinical 
markers to distinguish VAED from natural COVID-19 disease. The 
inherent complexity of COVID-19, including nonrespiratory mani-
festations such as coagulopathy in adults (117) and multisystem inflam-
matory syndrome in children, may make this distinction particularly 
difficult. Nonetheless, the occurrence of severe disease with a higher 
than expected frequency in a particular age group may be important 
as a potential signal of VAED.

The design of COVID-19 vaccine clinical trials takes these points 
into account by progressing from small (about 100 person) phase 1 
safety trials through large (~30,000 person) phase 3 efficacy trials 
(118). The primary efficacy analysis in a phase 3 trial may occur less 
than 12 months after the start of the phase 1 trial, and phase 3 trials 
are expected to include enough incident COVID-19 cases (e.g., 150 in-
fection events) at that point to confidently assess whether a vaccine 
candidate is reducing disease incidence by a factor of 2 or greater 
(119). All phase 3 trial participants are expected to be followed for 
at least 1 year (119). Thus, it is critical to implement and complete 
phase 3 efficacy studies to ensure that the vaccine is both safe and 
efficacious. Given the duration of the clinical trials, VAED will be 
identified if there is little delay after vaccination before the putative 
risk of VAED develops. If VAED occurred during a trial and was 
not distinguishable from natural disease, then clinical trials might 
identify it through an increase in the rate of morbidity or mortality 
in the vaccinated group compared with the control group (Table 2). 
Alternatively, if VAED occurred and was distinguishable from nat-
ural disease, then clinical trials might be able to identify much lower 
rates of VAED. U.S. Food and Drug Administration (FDA) guide-
lines for industry for emergency use authorization for vaccines to 
prevent COVID-19 were recently issued. These guidelines require 
that the trials (i) meet the prespecified success criteria for the study’s 
primary efficacy end point, (ii) provide all safety data from phase 1, 
2, and 3 trials, (iii) conduct follow-up of phase 3 participants for a 
median duration of at least 2 months after completion of the full 
vaccination regimen, and (iv) report five or more severe COVID-19 
cases in the placebo group to assess the possibility of VAED in the 
vaccine group (120).

Participants in phase 3 vaccine trials are monitored to detect ad-
verse events ranging from mild to severe. A severe adverse event 
triggers a pause in the trial, whereas a comprehensive assessment of 
causality for relatedness to vaccine administration is completed by 
an independent review committee, as occurred in the chimp adeno-
virus vector vaccine study (121, 122).

If data from phase 3 efficacy trials demonstrate that vaccine 
candidates meet the safety, efficacy, and quality standards set by 
regulators, then vaccine candidates may be licensed for use. The pos-
sibility of adverse events too rare for identification in clinical trials 
is assumed for all licensed vaccines. There remains the theoretical 
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possibility that COVID-19 vaccine recipients might develop VAED 
after infection with SARS-CoV-2 at a frequency too low to be de-
tected during the clinical trials or occurring after the clinical trials 
have ended. This possibility will need to be addressed by postlicensure 
surveillance. The appropriate methods for postlicensure surveillance 
will depend on whether the manifestations of VAED are distinct from 
those of COVID-19 disease, which would allow the development of 
a case definition of VAED. Established methods for postlicensure 
vaccine effectiveness studies, such as a case-control design, can moni-
tor for increased rates of severe disease after vaccination. Regulators 
may recommend specific types of studies to assess the potential for 
VAED related to COVID-19 vaccines (119), and sponsors of licensed 
vaccines may be required by regulatory authorities to monitor for 
known and unidentified risks after licensure. Implementing post-
vaccination surveillance procedures in the United States is the re-
sponsibility of the FDA and the U.S. Centers for Disease Control 
and Prevention (CDC) (123).

Last, because of the unprecedented number of COVID-19 vac-
cines in development, there will be a very large body of clinical data 
available for different vaccines and the placebo groups. This will provide 
the opportunity for meta-analyses across many studies to better understand 
the immunopathology of COVID-19 disease in different age groups 
and to look for severe adverse events such as VAED that may be rare.

Clinical trials of other prophylactic interventions, such as conva-
lescent plasma, hyperimmune globulin, and monoclonal antibodies, 
will evaluate protective efficacy and potential immune-associated en-
hanced disease as described for vaccine clinical trials. To the extent that 
vaccines elicit similar antibody responses, these data will provide 
evidence about mechanisms of protection and, if present, VAED, with 
the caveat that vaccine-induced immune responses are expected to 
have notable differences from antibody-based interventions given 
that vaccines will likely induce both antibodies and T cell responses.

Animal models of SARS-CoV-2 infection will continue to evolve 
as researchers attempt to identify models in young and aged animals 
that recapitulate more severe human COVID-19 disease presentation. 
However, unless immune enhanced disease is observed in humans, 

there will not be a way to evaluate whether any animal models are 
predictive of VAED in vaccinated humans. Although human chal-
lenge studies cannot be performed with SARS-CoV-2 in the absence 
of effective antiviral agents, infection of volunteers using minimally 
pathogenic coronaviruses may provide insights about immune cor-
relates of protection against these viruses (124).

CONCLUSIONS
We conclude that the available data do not support more concern 
about VAED for COVID-19 vaccines than is appropriate for the 
development of any viral vaccine. Convalescent plasma studies sug-
gest potential benefit rather than a risk of more severe disease. In 
addition, no serious safety signals have been reported from initial 
phase 1 trials of COVID-19 vaccine candidates, with the caveat that 
the number of vaccinees who have been subsequently exposed to 
SARS-CoV-2 infection is unknown but probably low. Nevertheless, 
an abundance of caution to exclude such a concern is warranted to be 
able to implement efficacious COVID-19 vaccines as widely, rapidly, 
and safely as possible.

Our analysis also finds that in nonclinical reports where immune-
associated enhanced disease, cellular immunopathology, and ADE 
of disease have been observed, no consistent mechanism or immune 
markers of disease enhancement are apparent. Also, importantly, 
there is no evidence that any of the in vitro or animal models of 
coronavirus infection reliably predict the human experience. Thus, 
it is not possible to prioritize or down-select vaccine antigens, adju-
vants, biotechnology platforms, or delivery mechanisms based on 
general immunological principles or the available preclinical data. 
Ultimately, the only way to address the theoretical risk of VAED is 
in phase 3 efficacy trials with sufficient numbers of end points to 
evaluate safety and efficacy, and by postlicensure surveillance. If 
VAED is frequent or clinically distinctive, then it should become 
apparent when clinical trial participants experience natural infection 
with SARS-CoV-2. The combination of protection against COVID-19 
and the lack of VAED in clinical trials would provide important 

Table 2. Power calculation to detect an elevated rate of severe COVID-19 disease in vaccine versus placebo recipients over 12 months, with 20,000 
enrolled vaccine recipients and 10,000 enrolled placebo recipients*. Est., estimated; HR, hazard ratio; CI, confidence interval. 

Annual 
incidence in 
placebo arm†

HR (vaccine/placebo) of severe COVID-19 Results reported if an elevated rate of severe COVID-19 disease 
was just detected‡

1.25 1.5 2.0 3.0 Expected # of 
placebo cases

# of vaccine 
cases Est. HR 95% CI

a0.0010 0.083 0.183 0.537 0.959 10 40 2.00 1.01–4.00
b0.0020 0.141 0.367 0.851 >0.999 20 66 1.65 1.01–2.72
c0.0040 0.233 0.629 0.991 >0.999 40 115 1.44 1.00–2.06
d0.0050 0.264 0.732 0.997 >0.999 50 139 1.39 1.01–1.92
e0.01 0.479 0.949 >0.999 >0.999 99 251 1.27 1.01–1.60

 *Power calculated on the basis of a one-sided 0.025-level log-rank test comparing the rate of severe COVID-19 disease in vaccine versus placebo groups; 
participants were followed for an average of 12 months with 2% annual dropout; all events after enrollment were counted; calculations assume a constant rate 
of the severe COVID-19 endpoint over time.     †The five placebo arm incidence scenarios correspond to (a) 2% annual COVID-19 incidence and 5% severe 
cases, (b) 4% annual COVID-19 incidence and 5% severe cases, (c) 4% annual COVID-19 incidence and 10% severe cases, (d) 2% annual COVID-19 incidence and 
25% severe cases, and (e) 4% annual COVID-19 incidence and 25% severe cases.     ‡Expected numbers of observed placebo group cases of severe COVID-19 
disease (expected # of placebo cases) are calculated on the basis of the incidence assumed in the first column, with 2% annual dropout. Estimated HR is the 
smallest estimated HR of severe COVID-19 disease (vaccine/placebo) such that the Wald two-sided 95% CI in a Cox proportional hazards model just lies above 
1.0, where # of vaccine cases and 95% CI correspond to this estimate.
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assurances of the efficacy and safety of the vaccine and the justifica-
tion for vaccine use. However, the detection of low rates of VAED, 
associated with a later exposure to SARS-CoV-2 in people who have 
been vaccinated, will depend on rigorous postlicensure surveillance, as 
is necessary when any new viral vaccine is introduced for the pre-
vention of morbidity and mortality that would otherwise be caused 
by a human viral pathogen. Thus, completion and full evaluation of 
COVID-19 vaccine phase 3 efficacy trials with long-term follow-up 
and postlicensure surveillance will provide the most comprehensive 
data on the safety of COVID-19 vaccines and the potential risk 
of VAED.
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