

Frank DiCristina BBEC, EMRS Certified Building Biology Environmental Consultant & Certified ElectroMagnetic Radiation Specialist

EMF Assessment Report for Haller Residence @ at 7420 Rice Lake Road, Duluth, MN 55803 5/31-6/1/23

Preface: Our EMF testing and reporting is objective, informative and we are independent of industry and government. We detect and measure EMFs that others won't, due to policy, or can't, due lack of training or proper instruments and we show you the biologically precautionary and non-thermal risk levels reported in independently funded, peer reviewed reports. Solutions are suggested and ongoing assistance is available by working with solution providers and verifying reduction in EMF exposure.

This report compares the 2020 report with measurements taken in May/June of 2023 of the very same property, same locations, using identical meter and a spectrum analyzer (in 2020) with a USB connected laptop with the WIFI turned off for data logging and screen shots images of the scans (for this scan).

Limitations of this assessment and report

EMF assessments detect and measure electromagnetic fields and radiation in or around a building or house.

This is a confidential report and no personal information will be shared except with those working on the project unless permission is granted by those ordering the report.

This assessment and report are not a structural, mechanical, pest or building code inspection. All measurements are a one time "snap shot" and measurements may be different on other days, other times of the day, at other locations, measured with different instruments or instrument settings.

We can detect measure, assign a risk level, propose & effectuate solutions that will reduce measurable EMF exposure but can't guarantee that health symptoms will reduce or disappear.

We can't make any claims about the presence or absence of pollutants other than the specific issues we tested for and measurements within the limits of our equipment nor can we make assumptions about conditions in areas of the building that were not tested.

By acceptance of this report the client or other readers hereby release Frank DiCristina, Grateful Dowsing dba: Environmental Healing Services and any recommended solution providers from any and all liability

Interpreting the Results

Building Biology Guidelines for Sleeping Areas

All of the EMF measurements taking in sleeping areas will be categorized as 1 of the following, depending on the levels detected.

No Concern: This category provides the highest degree of precaution. It reflects the unexposed natural conditions or the common and nearly inevitable background level of our modern living environment.

Slight Concern: As a precaution and especially with regard to sensitive and ill people, remediation should be carried out whenever possible.

Strong Concern: Values in this category are not acceptable from a building biology point of view, they call for action. Remediation should be carried out soon. In addition to numerous case histories, scientific studies indicate biological health effects and health problems within this reference range.

Extreme Concern: These values call for immediate and rigorous action. In this category international guidelines and recommendations for public and occupational exposures may be reached or even exceeded.

* If several sources of risk are identified within a single subcategory or for different subcategories, one should be more critical in the final assessment.

RADIOFREQUENCY / MICROWAVE EXPOSURE GUIDELINES (High Frequency Electromagnetic Waves)

1> BUILDING BIOLOGY PRECAUTIONARY GUIDELINES (SBM-2015) For Sleeping Areas*

Power density (Peak)	No Concern	Slight Concern	Severe Concern	Extreme Concern
microWatts per square meter µW/m²	< 0.1	0.1 - 10	10 - 1000	> 1000
microWatts per square cm µW/cm ²	< 0.000,01	0.000,01 - 0.001	0.001 - 0.1	> 0.1
milliWatts per square meter mW/m ²	<0.000,1	0.000,1 - 0.01	0.01 - 1	> 1
Signal strength				
Volts per meter V/m	< 0.006,14	0.006,14 - 0.061,4	0.061,4-0.614	> 0.614

2> BIOINITIATIVE REPORT PRECAUTIONARY GUIDELINES (Dec 31, 2012) Updated 2014-2020 www.bioinitiative.org

BioInitiative Working Group, Cindy Sage and David O. Carpenter, Editors. A Rationale for a Biologically-based Public Exposure Standard for Electromagnetic Radiation. Precautionary target level is 3 - 6 μW/m² or 0.000,3 – 0.000,6 μW/cm² (Peak)

3> CANADA AND UNITED STATES GOVERNMENT GUIDELINES (1999, 2009, 2019)

In Canada, guidelines for Radio Frequency Wave exposure lay under the jurisdiction of Health Canada. Safety code 6 was developed in 1999 and offers federal guidelines for safe RF exposure levels. These limits are in the range of **2,000,000 to 10,000,000 µW/m² or 200 to 1000 µW/cm²** (Time Averaged) and are based solely on the short term thermal effects or the heating of body tissue. Adverse biological effects have been documented at levels far below Safety Code 6 guidelines. No Canadian biological exposure guidelines exist for long term exposure to low level Radio Frequency Radiation. This also holds true for the USA and their FCC guidelines.

1. Suggested Solutions:

1.1 Install metal roof and have it properly grounded. A metal roof can help with blocking and reflecting cell tower signal away from the interior of the home.

- 1.2 Use Y-Shield Paint for all the inside walls on the exterior portion of the house especially the walls facing the cell tower. Also paint the ceilings if a metal rood is not installed. The exterior doors should also be painted as well. Due to the proximity of the tower, 2 coats minimum of Y-Shield are recommended.
- 1.3 Apply Signal Protect[®] RF window film to all windows and sliding glass doors to the side of house facing tower. This should be immediately effective, though costly & laborious. Professional application highly recommended.
- 1.4 Sell house & move to location with less RF exposure if above steps are not installed. This solution but very costly and disruptive will eliminate the exposure they are experiencing currently. An EMF assessment before becoming committed to a new property is necessary.

2. General Summary:

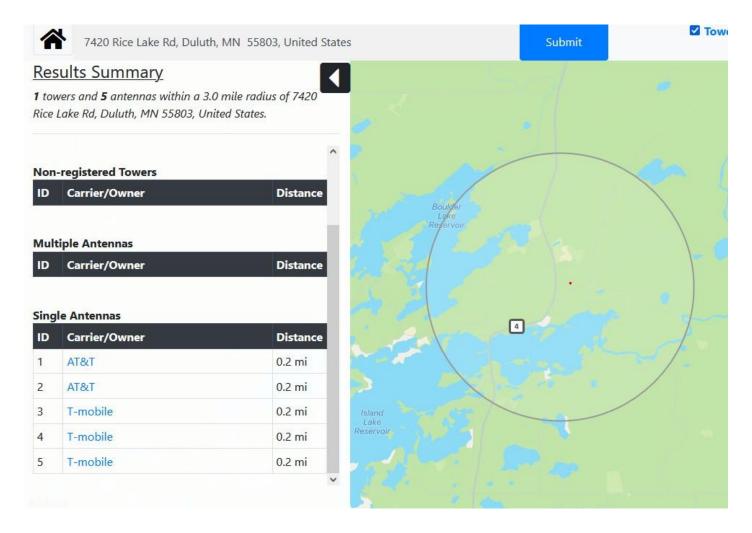
2.1 I was contacted in 2020 to measure the client's property to determine if the cell tower adjacent to the property could be a cause of RF exposure to their home. Marcia Haller was very concerned that the signals broadcasted from the tower could be a cause of her medical condition. I advised the client and her husband that I am NOT medically trained and I am a technician whose job is to measure the electromagnetic spectrum and identity the potential causes and suggest solutions.

2.2 The readings taken in 2020 showed peaks of up to 18mW, 18X higher than the Building Biology Standard Extreme Limit. At that time, it was over a 3-hour period during the middle of the day. This time it was taken during 2 periods where we felt the readings would be as high or higher, in the evening on 5/31/23 and morning 6/1/23. At that time in 2020, the Haller's have not built their Faraday cage in their garage as off yet. So, no readings were taken of that area

2.3 I discussed various solutions with Jay Haller about what could be done. None of them were financially acceptable both in 2020 or 2023. We even discussed metal siding as an option with shielding in the walls. 2.4 The last bit of discussion was moving. Their biggest concern was "where to." They have lived on their property long before the cell tower was installed. They also feelt that if they did opt to move that it still would not be long before another cell tower or multiple towers would be installed nearby.

2.5 Statement of Professional Opinion:

Due to legal reasons, I prefer not to recommend a client to move, but in this case that is in my opinion and the best solution. The Haller's could spend easily \$30-60K or more in remodeling, renovating and mitigating their home but they would not be able to enjoy their whole property with the tower looming over their heads. The tower is less than ¼ mile away from their home and does not seem to be going anywhere or being shut down. I have been in the electronics industry as a technician in various capacities for over 40 years. I became certified as a Building Biologist in 2013, I have been the Program director for 2 years and also was an instructor for Advanced Electromagnetic Radiation seminars with the Building Biology Institute.



This home has severe to extreme exposure issues in the home and especially around the property. They have quite a few tall trees between the home and the tower, but due to tower height and distance I believe their exposure would be even worse if the trees were not present.

3. Radio Frequency Radiation: RF 2023

3.1 Sources:

AT&T, T Mobile 7397 Thompson Lake Road, Duluth, MN (4) Neighbors WiFi

Sincerely,

Frank DiCristina BBEC, EMRS Certified Building Biology Environmental Consultant & Certified ElectroMagnetic Radiation Specialist

Disclaimer

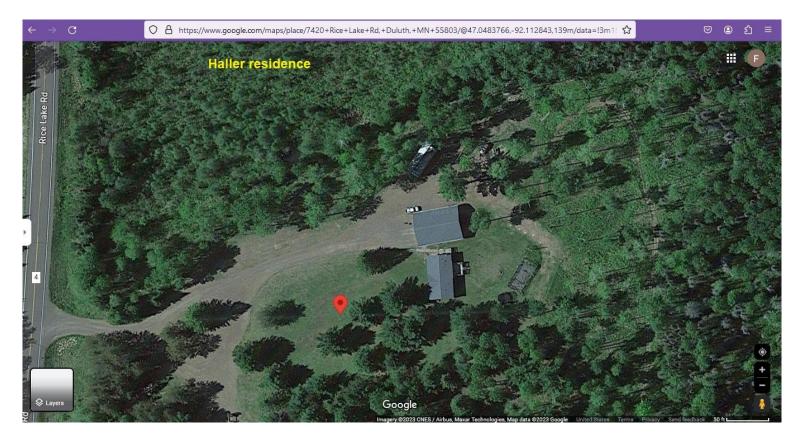
Though we hope the included recommendations will lead to a more productive, trouble free and healthier life, no statement or information provided by this report or linked to this website or subsequent consultation(s), is intended for use in the diagnosis, cure, mitigation, treatment or prevention of disease or any other medical condition. The reader, viewer or listener is advised to discuss the information provided here with an authorized healthcare practitioner.

We can detect measure, assign a risk level, propose & effectuate solutions that will reduce measurable EMF exposure but can't guarantee that health symptoms will reduce or disappear. Frank DiCristina Grateful Dowsing, shall not be liable for any health effects arising due to recommendations made or not made by the Assessment or subsequent consultation(s).

The measurements requiring physical connection to building wiring are conducted according to the best electrical practices. Grateful Dowsing is not responsible for any physical damage to electrical outlets or house power distribution system arising from loose, defective or brittle receptacles or improper wiring. The results relate only to the items tested.

The discussions in this report are based only on single (one time) results and may not be repeatable if conditions at the home, site or building change or if the results are collected during different time periods, at different locations, with different meters or meter settings.

Most of the inspection techniques, testing protocols and environmental criteria evaluated in this report were developed by the International Institute for Building Biology and Ecology, https://buildingbiologyinstitute.org/, based on established practices in Germany. We use top of line certified and calibrated instruments specifically designed for Building Biologists.


While relatively holistic in nature, these protocols can't cover every possible equipment or health hazard on any given property. There may be hidden hazards that were not exposed or tested for in this assessment. We can't make any claims about the presence or absence of pollutants or toxins other than what we tested for this report.

Copyright © by Frank DiCristina, Grateful Dowsing dba: Environmental Healing Services. All rights reserved. Permission is hereby granted to take copies of any part of this document for Non-Commercial purposes provided this original copyright notice is included.

Next pages:

- Photos & Data logs
- Meters used on this assessment
- Certifications, Bio and background of Frank DiCristina

frank@gratefuldowsing.comwww.env8509 Bryant Avenue South, Bloomington, MN 55420

www.environmentalhealingservices.com

www.gratefuldowsing.com 612-384-1334

www.gratefuldowsing.com 612-384-1334

And now in 2022, with 5G in so many places and the 5G race heating up, you need to know about carrier **low-band 5G**, **mid-band 5G**, **C-Band 5G**, and **mmW 5G**. Because not all 5G is created equal, confirming a phone has the best 5G coverage in your city is important.

So since there doesn't seem to be a quick reference guide for figuring out if a particular unlocked phone will work on a specific carrier's network (trust me, I've looked), we decided to throw one together.

Verizon, AT&T, T-Mobile, and Sprint network bands

Below, we have given you a quick chart that shows each of the four major US carriers (**Verizon, AT&T, T-Mobile, and Sprint**), along with 3G, 4G LTE, and 5G bands and frequencies. By no means is this the most in-depth wireless carrier band and frequency chart, but it should help when you go to buy that next unlocked phone from Samsung, Google, OnePlus, Apple, or Motorola.

US 5G Bands (by carrier)

CARRIER	BANDS	FREQUENCIES
AT&T	n5, n77, n260	850MHz (low), 3.7GHz (mid), 39GHz (mmW)
VERIZON	n2, n5, n77, n66, n261, n260	1900MHz (low), 850MHz (low), 3.7GHz (mid), 1700-2100MHz (low), 28GHz (mmW), 39GHz (mmW)
T-MOBILE	n41, n71, n261, n260	2.5GHz (mid), 600MHz (low), 28GHz (mmW), 39GHz (mmW)
SPRINT	n41	2.5GHz (mid)

US 4G LTE Bands (by carrier)

CARRIER	4G LTE BANDS	4G LTE FREQUENCIES
AT&T	2, 4, 5, 12, 14, 17, 29, 30, 66	1900, 1700/2100, 850, 700, 2300
VERIZON	2, 4, 5, 13, 66	1900, 1700/2100, 850, 700
T-MOBILE	2, 4, 12, 66, 71	1900, 1700/2100, 700, 600

US 3G Bands (by carrier)

CARRIER	NETWORK	3G BANDS	3G FREQUENCIES
AT&T	GSM/HSPA+	2, 5	1900, 850
VERIZON	CDMA	0,1	850, 1900
T-MOBILE	GSM/HSPA+	2,4	1900, 1700/2100
SPRINT	CDMA	2, 10	1900, 800
US CELLULAR	CDMA	2, 5	850, 1900

UPDATED MARCH 1, 2022.

Straight Line Readings taken from Edge of clearing through area between house and garage out to the road.

Grateful Dowsing Environmental Healing Services

Location All measurements taken at approximately chest level	Date/Time	HF59B Peak setting UBB27 Antenna	HF59B Building Average Biology Setting Precautionary UBB27 Guidline Antenna		Building Biology Precautionary Guidline	
		mW/m ² no concern <0.000,1 Slight 0.000,1-0.01 Severe 0.01-1 Extreme >1	SMB-2015 Sleeping areas Extreme Concern Level	mW/m ² no concern <0.000,1 Slight 0.000,1-0.01 Severe 0.01-1 Extreme >1	SMB-2015 Sleeping areas Extreme Concern Level	
	5/31/2023					
start	7:40pm					
Edge of Clearing		1.12mW	Extreme	.16mW	Severe	
20ft		1.1mW	Extreme	.36mW	Severe	
40'		1.9mW	Extreme	.36mW	Severe	
60'		1.07mW	Extreme	.50mW	Severe	
80'		1.55mW	Extreme	.34mW	Severe	
100'		1.28mW	Extreme	.29mW	Severe	
120' 140'		1.51mW	Extreme	.38mW	Severe	
140		.78mW 1.11mW	Severe	.19mW .28mW	Severe Severe	
140		.19mW	Extreme Severe	.05mW	Severe	
180'		.13mW	Severe	.08mW	Severe	
200'		.08mW	Severe	.04mW	Severe	
220'		.08mW	Severe	.04mW	Severe	
240'		.26mW	Severe	.05mW	Severe	
260'		.06mW	Severe	.04mW	Severe	
280'		.21mW	Severe	.04mW	Severe	
300'		.25mW	Severe	.04mW	Severe	
320'		.24mW	Severe	.04mW	Severe	
340'		.30mW	Severe	.05mW	Severe	
360'		.24mW	Severe	.06mW	Severe	
380'		.28mW	Severe	.04mW	Severe	
400'		.35mW	Severe	.08mW	Severe	
420'		1.30mW	Extreme	.15mW	Severe	
440'		1.41mW	Extreme	.07mW	Severe	
460'		.31mW	Severe	.11mW	Severe	
480'		.28mW	Severe	.07mW	Severe	

frank@gratefuldowsing.com

Grateful Dowsing

500'		.38mW	Severe	.10mW	Severe	
520'		.57mW	Severe	.12mW	Severe	
finish	8:30pm					

Location	Date/Time	Trifield Peak		Trifield Average	
		mW/m ² no concern <0.000,1 Slight 0.000,1-0.01 Severe 0.01-1 Extreme >1	SMB-2015 Sleeping areas Extreme Concern Level	mW/m ² no concern <0.000,1 Slight 0.000,1-0.01 Severe 0.01-1 Extreme >1	SMB-2015 Sleeping areas Extreme Concern Level
	5/31/2023				
start	7:40pm				
Edge of	·				
Clearing		2.4mW	Extreme	.48mW	Severe
20ft		2.3mW	Extreme	.77mW	Severe
40'		.79mW	Severe	.38mW	Severe
60'		.93mW	Severe	.22mW	Severe
80'		.47mW	Severe	.13mW	Severe
100'		.85mW	Severe	.22mW	Severe
120'		1.2mW	Extreme	.47mW	Severe
140'		1.45mW	Extreme	.37mW	Severe
140'		1.1mW	Extreme	.33mW	Severe
160'		1.03mW	Extreme	.238mW	Severe
180'		1.1mW	Extreme	.226mW	Severe
200'		.99mW	Severe	.15mW	Severe
220'		.63mW	Severe	.21mW	Severe
240'		.41mW	Severe	.14mW	Severe
260'		.45mW	Severe	.11mW	Severe
280'		.08mW	Severe	.03mW	Severe
300'		.03mW	Severe	.017mW	Severe
320'		.049mW	Severe	.017mW	Severe
340'		.062mW	Severe	.021mW	Severe
360'		.08mW	Severe	.03mW	Severe
380'		.42mW	Severe	.097mW	Severe
400'		1.5mW	Extreme	.29mW	Severe
420'		1.5mW	Extreme	.38mW	Severe
440'		2.9mW	Extreme	.56mW	Severe

frank@gratefuldowsing.com

www.environmentalhealingservices.com

8509 Bryant Avenue South, Bloomington, MN 55420

Grateful Dowsing **Environmental Healing Services**

460'		2.3mW	Extreme	.45mW	Severe
480'		1.4mW	Extreme	.45mW	Severe
500'		3.1mW	Extreme	.75mW	Severe
520'		.55mW	Severe	.18mW	Severe
finish	8:30pm				

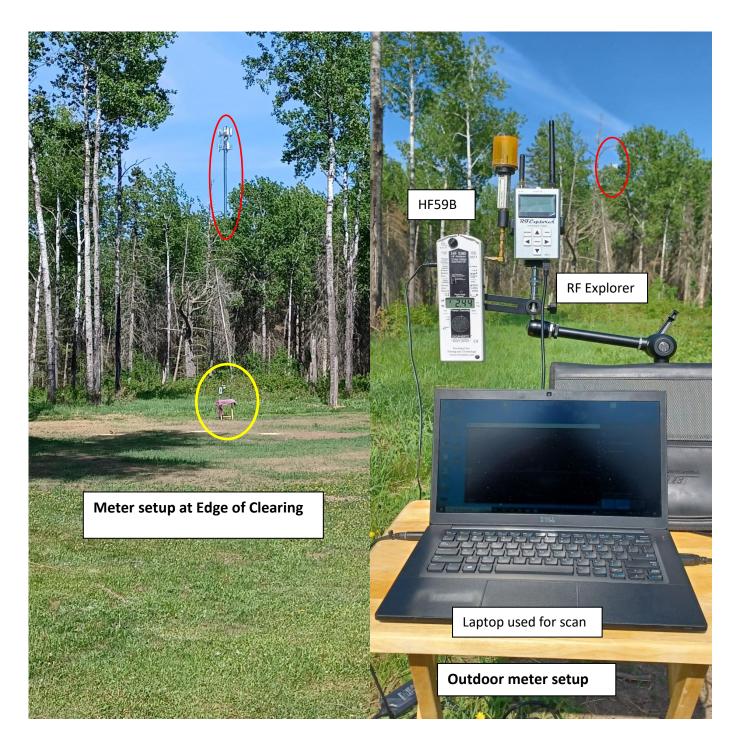
Location	Notes
	Jay Haller wrote the numbers while I took the readings
start	we walked from the edge of clearing out to the road
Edge of	
Clearing	in as straight of a line as possible
20ft	we used the HF59B 1st and then backtracted with the
40'	Trifield meter. It was difficult gathering the data due to
60'	the bugs at that time of the day.
80'	
100'	20' from house
120'	deck
140'	standing on the deck
140'	on sidewalk (dead spot)
160'	
180'	Fire pit
200'	tree (humming bird feeders)
220'	
240'	
260'	
280'	
300'	
320'	
340'	
360'	
380'	
400'	
420'	
440'	
460'	
480'	
500'	
520'	Main Road

frank@gratefuldowsing.com www.environmentalhealingservices.com 8509 Bryant Avenue South, Bloomington, MN 55420

finish

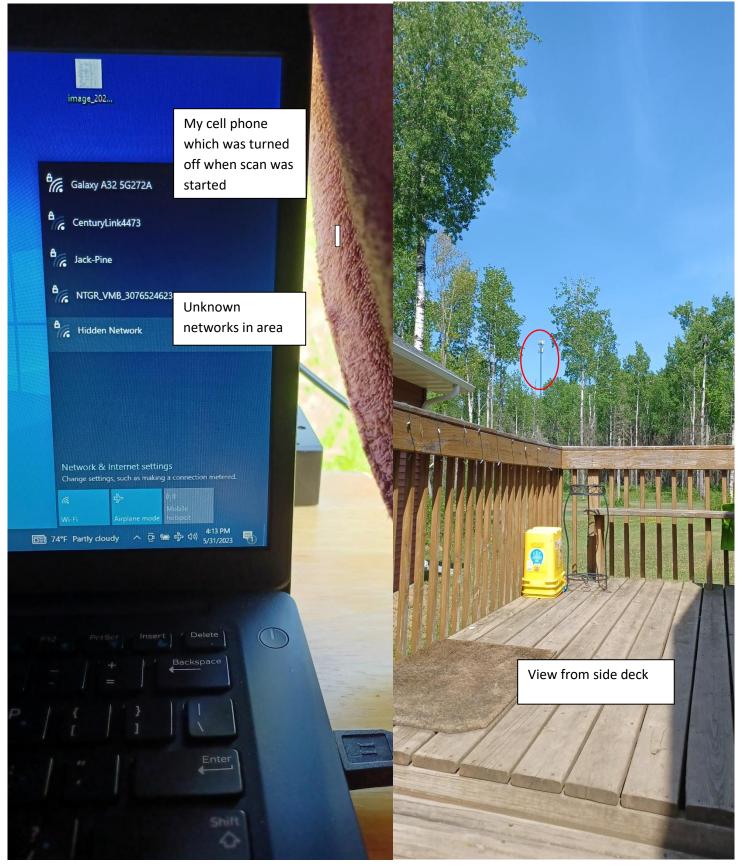
RF Explorer Scan Readings taken at Edge of Clearing Setup Details:

A small wooden table setup with multi-mount stand holding HF59B and RF Explorer meters was used. The RF Explorer was connected by USB to Dell Laptop to view RF scans with analyzer software. Pictures were taken of setup. Wireless networks were observed in the area. The Hallers do not have a wireless network and my phone was turned off once the testing had begun. RF Explorer scans and HF59B scans were taken at the same time. The RF Explorer scans were data logged and screen shots taken while the HF59B were written down. The time stamp was logged by the RF Explorer.


Scans were made in bandwidths using the coarse setting. Some high resolution scans were taken but was abandoned due to time the scan took and limited bandwidth. I felt the main point of the spectrum analyzer was to determine what areas of frequencies/signals were being transmitted, whereas the HF59B takes readings of the overall spectrum.

The HF59B does both peak and average readings by its selector switch. Also after each reading of the HF59B I cleared its hold memory for the next scan. The RF Explorer data logs but only the peak readings were taken. This was due to the fact how long it took for each scan. This took approximately 3 minutes each time depending on how many data points were taken. Also after a scan was done, I had to setup the software for the next bandwidth to scan.

Another thing to look for when viewing the scan images is the density plot on the lower screen shot. Areas of yellow-orange-red are of a concern they show the density of the frequency at that area of the RF spectrum. So a lower amplitude signal can still be a potential issue due to its frequency of broadcasting meaning how many times it's repeated as opposed to its strength.


Since the software took 1,000's of data points I only focused on the higher numbers for this report. That is shown in the chart below. Grateful Dowsing

Environmental Healing Services

Grateful Dowsing

Environmental Healing Services

frank@gratefuldowsing.comwww.envi8509 Bryant Avenue South, Bloomington, MN 55420

www.environmentalhealingservices.com

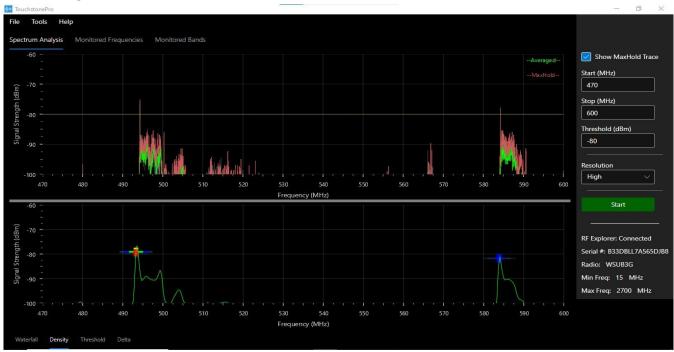
www.gratefuldowsing.com 612-384-1334

OUTDOOR SCAN

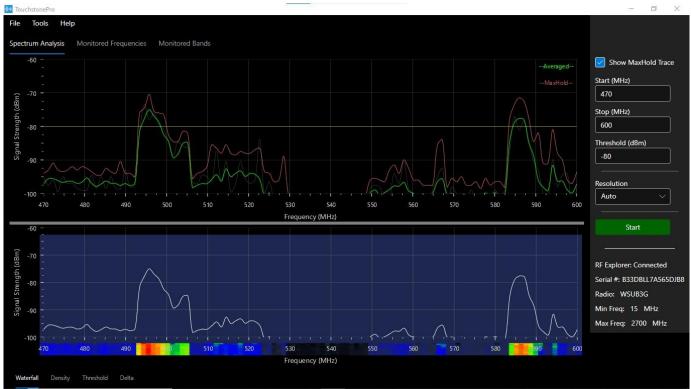
Location	Date/Time	HF59B Peak	HF59B Average	Trifield Peak	Trifield Average	These readings were taken while setup was
Edge of						
Clearing	5/31/2023					taken at edge of clearing at 1st.
			.045-			
	4:25pm	9.93mW	.88mW			
	4:32pm	3.95mW	.1237mW			
	4:45pm	7.28mW				
	5:01pm	2.22mW	.41-087mW			
	5:09pm	2.7mW	.4670mW			
	5:15pm	2.99mW	.6789mW			
	5:21pm	1.29mW	.2132mW			
	5:28pm	1.68mW	.1626mW			
			.019-			
	5:37pm	2.02mW	.34mW			
Hot Spot in						Marcia Haller brought out her Trifield
yard	6:27pm			3.39mW	.77mW	meter
	6:30pm			4.30mW	.661mW	to show me hot spots in the yard
	6:33pm			4.87mW	1.551mW	

Grateful Dowsing

Location All measurement s taken at approximately chest level	Date/Tim e	HF59B Peak setting UBB27 Antenna	Building Biology Precautionary Guideline	HF59B Average Setting UBB27 Antenna	Building Biology Precautionary Guideline
		mW/m ² no concern <0.000,1 Slight 0.000,1-0.01	SMB-2015 Sleeping areas Extreme	mW/m ² no concern <0.000,1 Slight 0.000,1-0.01	SMB-2015 Sleeping areas Extreme
		Severe 0.01-1	Concern	Severe 0.01-1	Concern
		Extreme >1	Level	Extreme >1	Level
Edge of Clearing	5/31/2023				
				.045-	
	4:25pm	9.93mW	Extreme	.88mW	Severe
				.12-	
	4:32pm	3.95mW	Extreme	.37mW	Severe
	4:45pm	7.28mW	Extreme	NA	Severe
	5:01pm	2.22mW	Extreme	.41- 087mW	Severe
	5:09pm	2.7mW	Extreme	.46- .70mW	Severe
	5:15pm	2.99mW	Extreme	.67- .89mW	Severe
	5:21pm	1.29mW	Extreme	.21- .32mW	Severe
	5:28pm	1.68mW	Extreme	.16- .26mW	Severe
	5:37pm	2.02mW	Extreme	.019- .34mW	Severe
		Trifield Peak		Trifield Average	
Hot Spot in yard	6:27pm	3.387mW	Extreme	.77mW	Severe
	6:30pm	4.30mW	Extreme	.661mW	Severe
	6:33pm	4.867mW	Extreme	1.551mW	Extreme

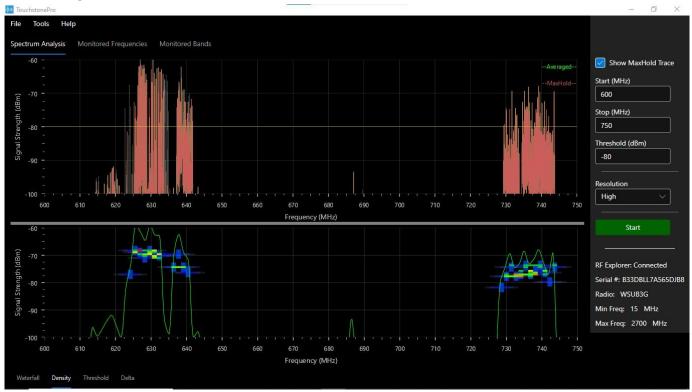

RF EXPLORER OUTDOOR SCAN

5/31/2023	Peak				6/1/2023	Peak			
	Outdoor scan					Indoor scan			
	Frequency					Frequency			
Time PM	MHz	dbm	uW	Image	Time AM	MHz	dBm	uW	Image
4:30	494	-62	0.00063	17	9:27	584.77466	-73	0.00005	1 & 2
	498	-62	0.00063	17		585.94583	-71	0.000079	1&2
4:42	625	-42	0.063095	18		587.117	-72	0.000063	1&2
	630	-40	0.1	18	9:40	627	-58	0.00158	3
	635	-38	0.158489	18		630	-58	0.00158	3
4:49	902.7027	-76	0.000025	19	9:42	758.753024	-71	0.000079	4
4:57	1348.6485	-70	0.00009	20		765.841425	-71	0.000079	4
5:05	1648.6485	-77	0.000019	21	9:54	989.1891	-86	0.0000025	5
5:11	1964.8647	-49	0.012589	22	9:57	1124.32425	-94	0.0000003	6
	1967.5674	-47	0.019952	22	9:59	1348.6485	-76	0.000025	7
	1970.2701	-47	0.019952	22	10:07	1348.6485	-76	0.000025	8
	1972.9728	-48	0.015848	22		1437.8376	-78	0.000015	8
5:17	2121.6216	-48	0.015848	23	10:19	1600	-82	0.000006	9
	2124.3243	-47	0.019952	23	10:24	1964.8647	-60	0.000999	10
	2127.027	-49	0.012589	23	10:41	2481.081	-56	0.002511	11
5:23	2480	-58	0.00158	24	10:52	4884.05402	-76	0.000025	12
5:31	4850	-69	0.000125	25	11:04	4935.1351	-70	0.00009	13
5:35	5005.4053	-59	0.00125	26	11:10	5205.4054	-71	0.000079	14
	5013.5134	-59	0.00125	26	11:15	5521.6216	-80	0.00001	15
	5024.3242	-59	0.00125	26		5586.4864	-80	0.00001	15
	5027.0269	-59	0.00125	26	11:23	6097.297	-69	0.000125	16
	5029.7296	-58	0.00158	26					
	5032.4323	-59	0.00125	26					
	5035.135	-59	0.00125	26					
	5037.8377	-56	0.002511	26					
	5040.5404	-57	0.00199	26					
	5043.2431	-58	0.00158	26					
	5051.3512	-58	0.00158	26					
	5054.0539	-57	0.00199	26					
5:40	5356.7566	-71	0.000079	27					
5:45	5510.8108	-77	0.000019	28					
	5513.5135	-77	0.000019	28					
	5578.3783	-78	0.000015	28					
5:59	6094.5943	-72	0.000063	29					
	6097.297	-69	0.000125	29					
	6099.9997	-71	0.000079	29					

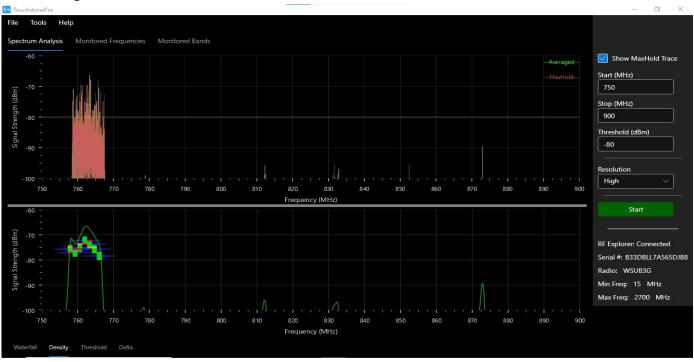

frank@gratefuldowsing.com

Grateful Dowsing

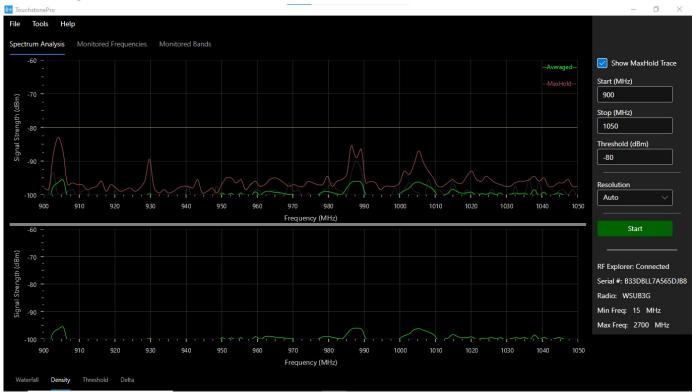
9:27am Image 1



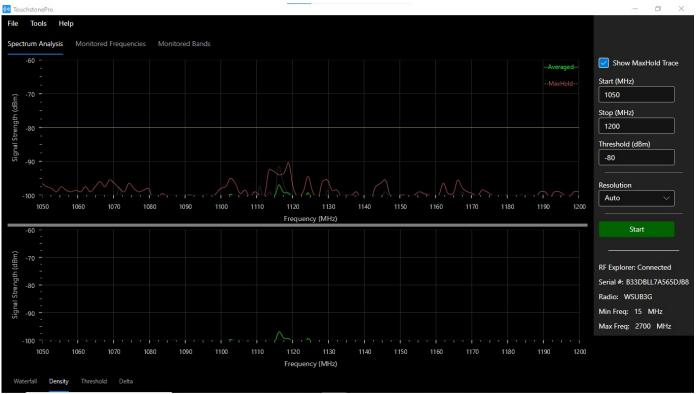
9:27am Image 2



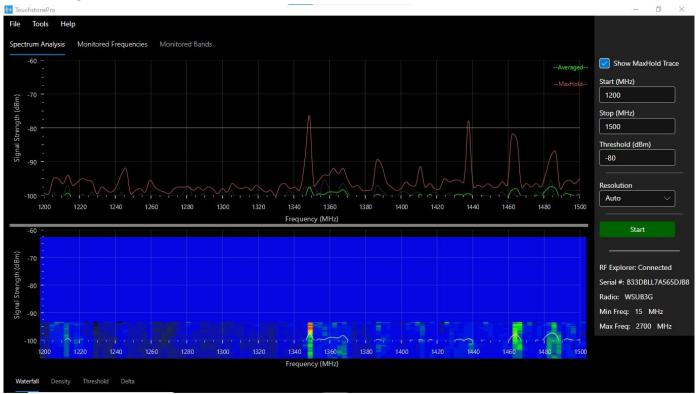
9:40am Image 3

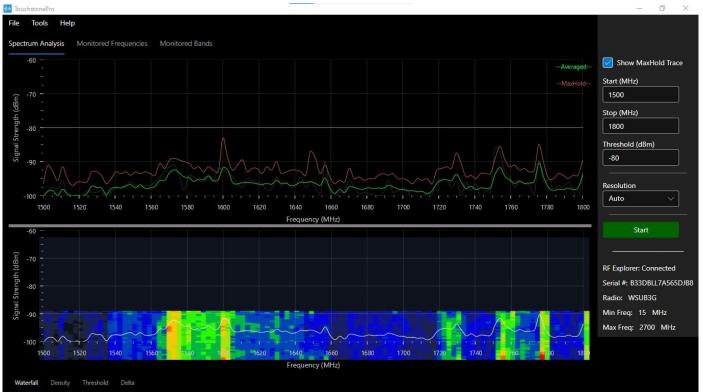


9:42am Image 4



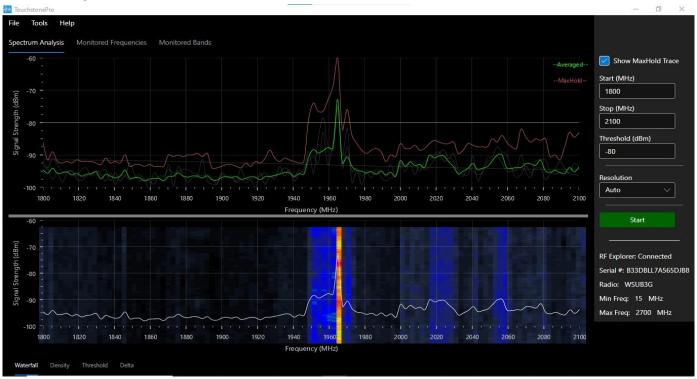
9:54am Image 5


9:57am Image 6

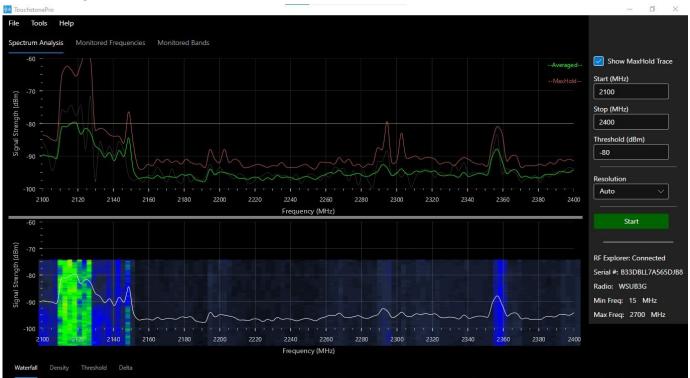

www.environmentalhealingservices.com

9:59am Image 7

10:07 am Image 8

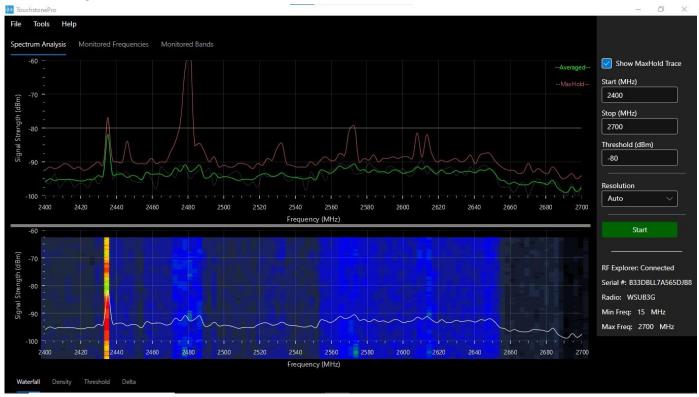


frank@gratefuldowsing.com

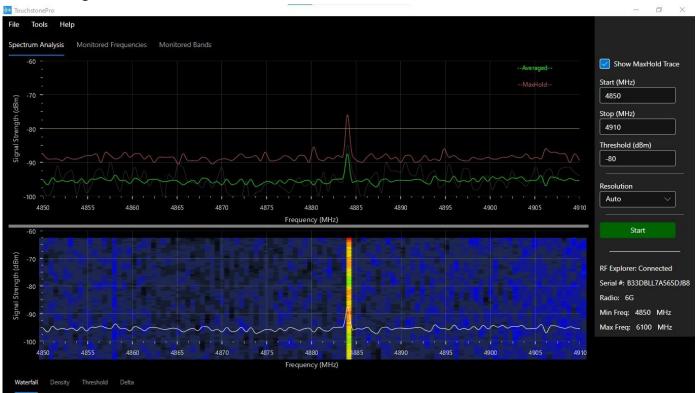

www.environmentalhealingservices.com 8509 Bryant Avenue South, Bloomington, MN 55420

Grateful Dowsing

10:19am Image 9



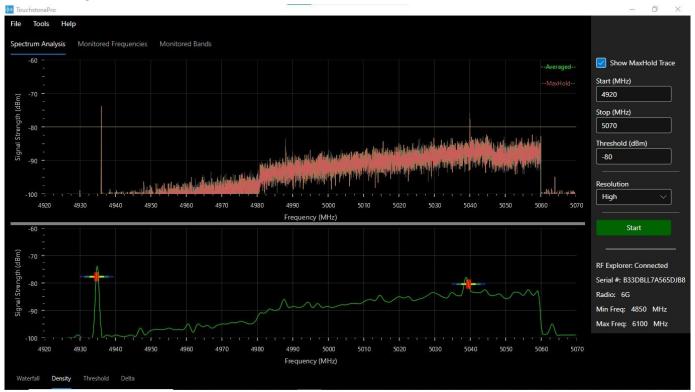
10:24am Image 10



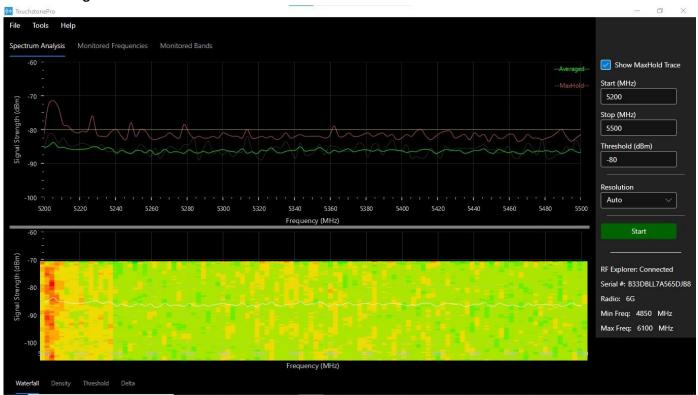
Grateful Dowsing **Environmental Healing Services**

10:41am Image 11

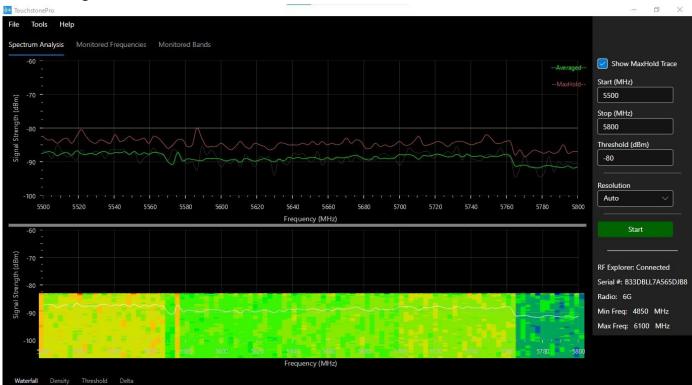
10:52am Image 12

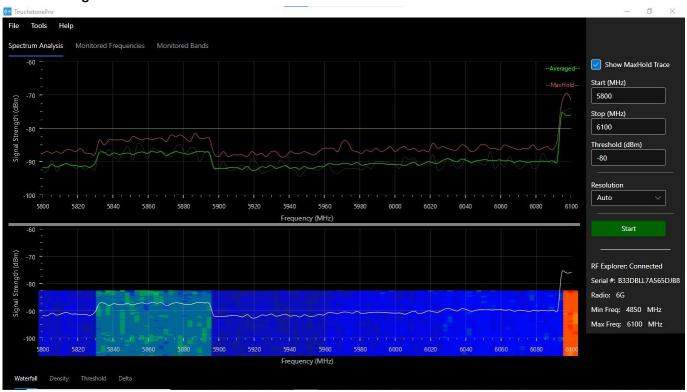


frank@gratefuldowsing.com

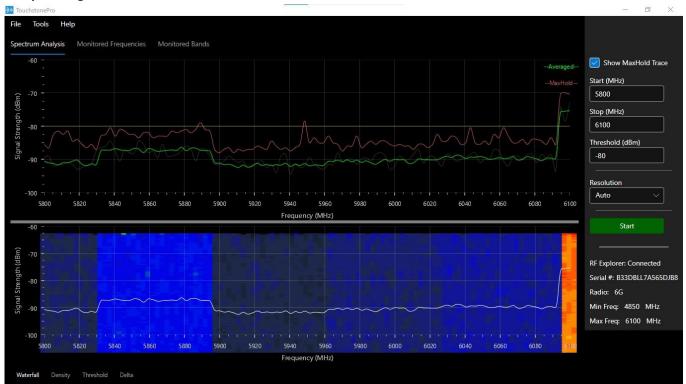

www.environmentalhealingservices.com 8509 Bryant Avenue South, Bloomington, MN 55420

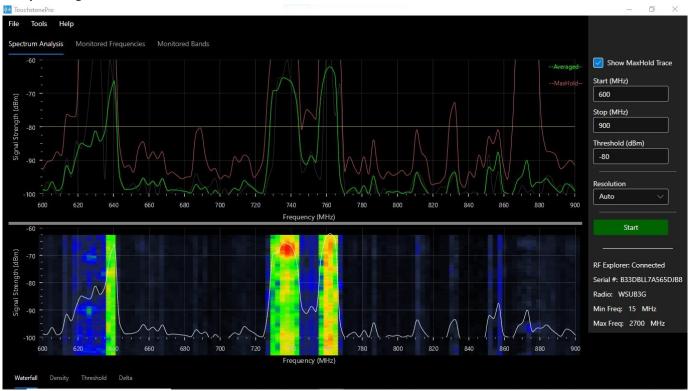
11:04am Image 13


11:10am Image 14


<u>frank@gratefuldowsing.com</u> <u>www.environmentalhealingservices.com</u> 8509 Bryant Avenue South, Bloomington, MN 55420

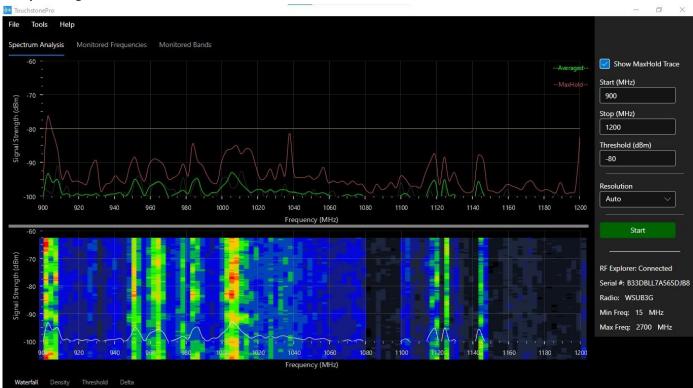
11:15am Image 15


11:23am Image 16

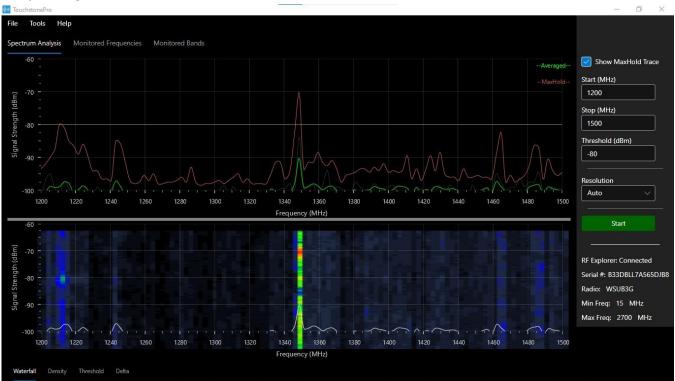

<u>frank@gratefuldowsing.com</u> <u>www.environmentalhealingservices.com</u> 8509 Bryant Avenue South, Bloomington, MN 55420 www.gratefuldowsing.com 612-384-1334

4:30pm Image 17

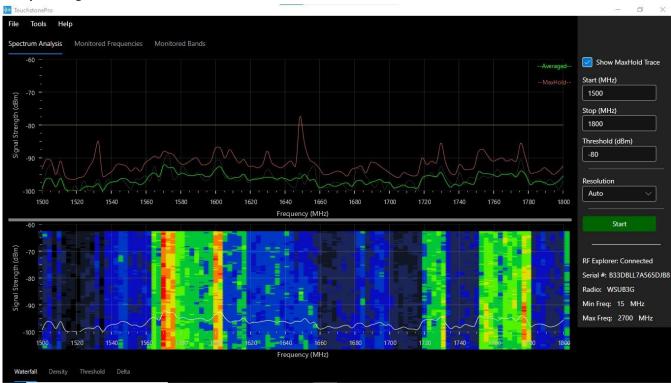
4:42pm Image 18

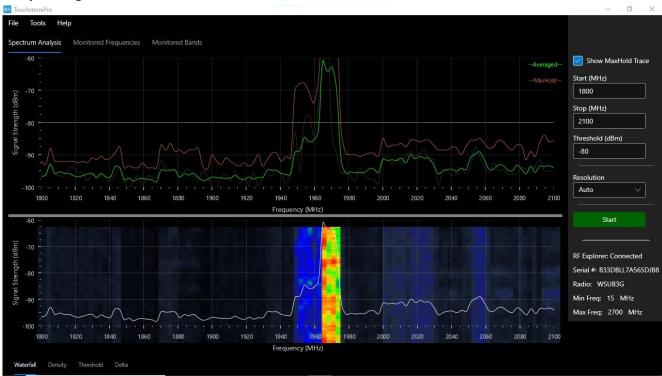


frank@gratefuldowsing.com


8509 Bryant Avenue South, Bloomington, MN 55420

4:49pm Image 19


4:57pm Image 20

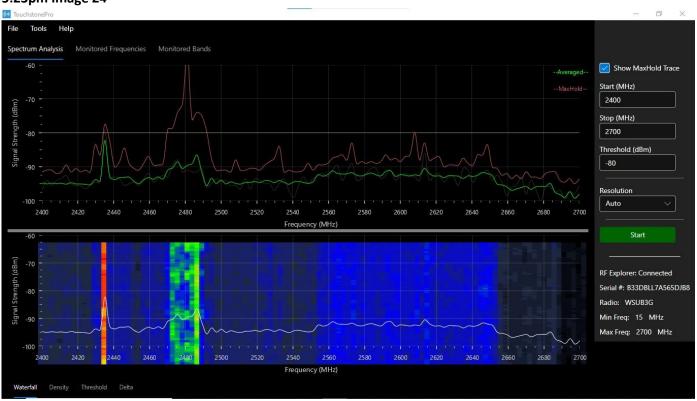

<u>frank@gratefuldowsing.com</u> <u>www.environmentalhealingservices.com</u> 8509 Bryant Avenue South, Bloomington, MN 55420 www.gratefuldowsing.com 612-384-1334

5:05pm Image 21

5:11pm Image 22

frank@gratefuldowsing.com

8509 Bryant Avenue South, Bloomington, MN 55420


www.environmentalhealingservices.com

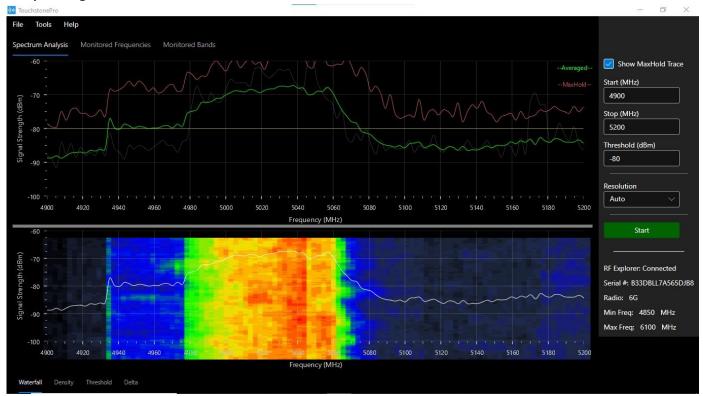
5:17pm Image 23

5:23pm Image 24

frank@gratefuldowsing.com

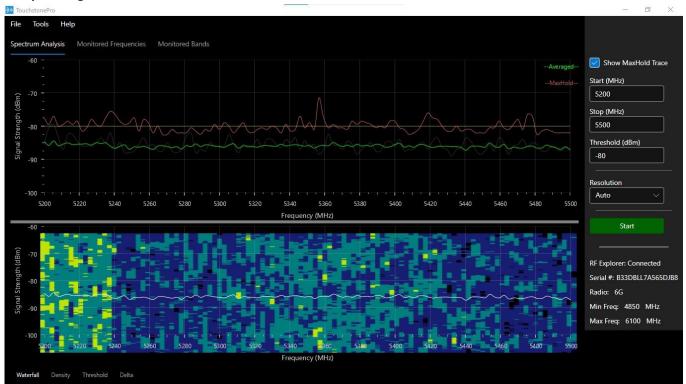
8509 Bryant Avenue South, Bloomington, MN 55420

www.environmentalhealingservices.com www.gratefuldowsing.com

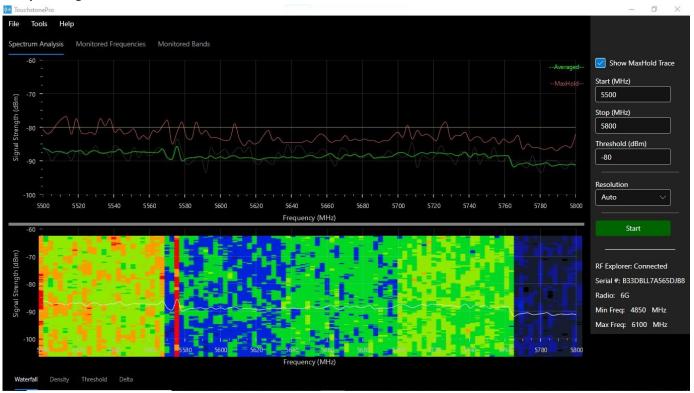

612-384-1334

5:31pm Image 25

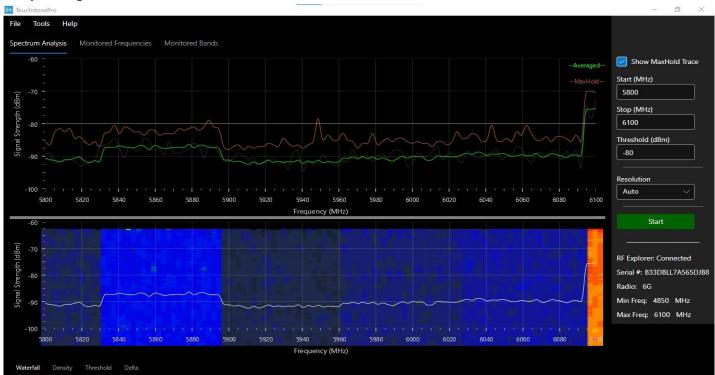
5:35pm Image 26



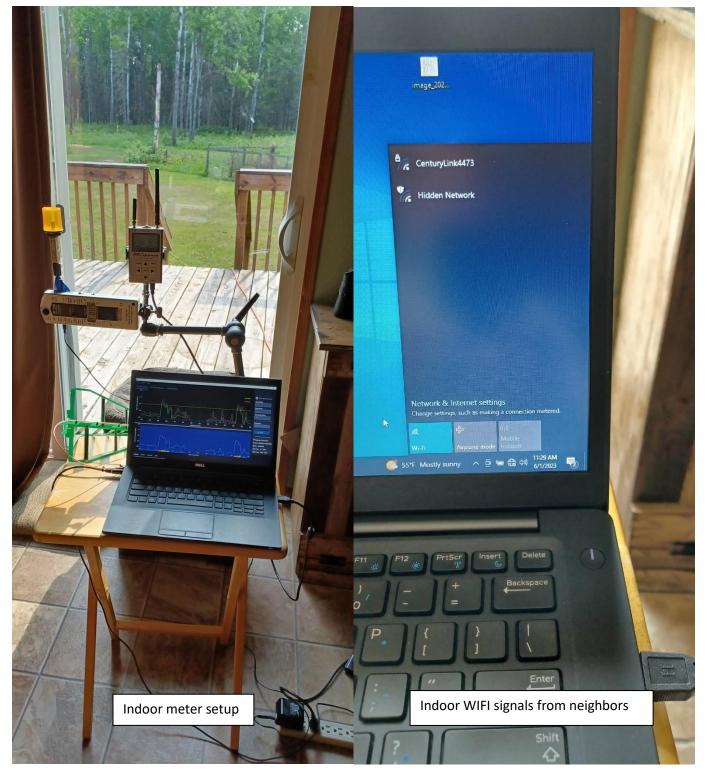
frank@gratefuldowsing.com


www.environmentalhealingservices.com 8509 Bryant Avenue South, Bloomington, MN 55420

5:40pm Image 27


5:45pm Image 28

frank@gratefuldowsing.comwww.environmentalhealingservices.com8509 Bryant Avenue South, Bloomington, MN 55420

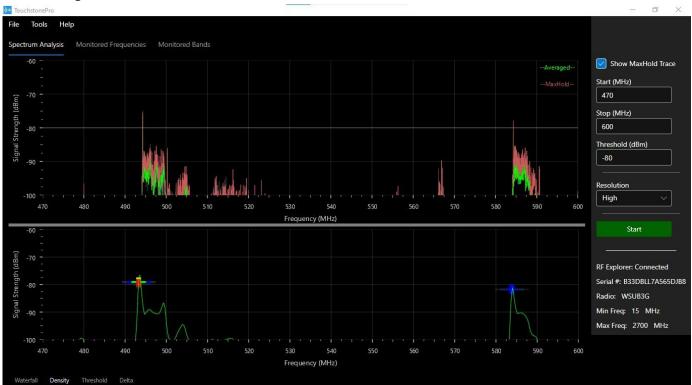


5:59pm Image 29

INDOOR SCAN

INDOOR HF59B SCAN

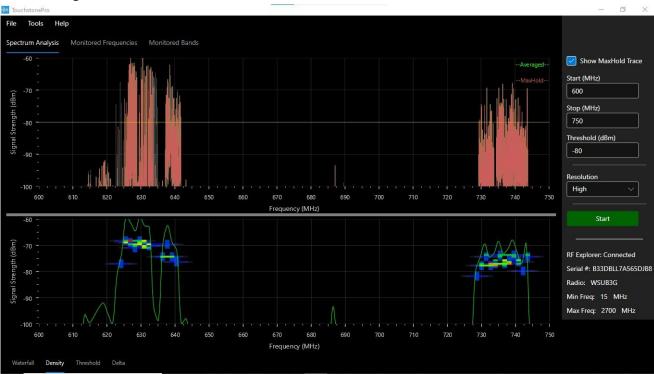
Location All measurements taken Inside Home at Dining Area	Date/Time	HF59B Peak setting UBB27 Antenna	Building Biology Precautionary Guidline	HF59B Average Setting UBB27 Antenna	Building Biology Precautionary Guidline	
		mW/m ² no concern <0.000,1 Slight 0.000,1-0.01 Severe 0.01-1 Extreme >1	SMB-2015 Sleeping areas Extreme Concern Level	mW/m ² no concern <0.000,1 Slight 0.000,1-0.01 Severe 0.01-1 Extreme >1	SMB-2015 Sleeping areas Extreme Concern Level	
6/1/2023	9:23am	1.10mW	Extreme	4.5-7uW	Slight	
	9:33am	4.04mW	Extreme	NA	Slight	
	9:45am	4.9mW	Extreme	4.55- 5.4uW	Slight	
	9:53am	.74mW	Severe	3.8-7.6uW	Slight	
	9:56am	.56mW	Severe	6.3-8.5uW	Slight	
	10.04am	2.36mW	Extreme	4.35- 7.23uW	Slight	
	10:11am	9.32mW	Extreme	7.82- 9.5uW	Slight	
	10:54am	16mW	Extreme	At this point I concentrated on the peak readings due to the average levels that		
	10:59am	5.69mW	Extreme			
	11:11am	.46mW	Severe			
	11:13am	6.8mW	Extreme			
	11:14am	19.4mW	Extreme			
	11:15am	3.1mW	Extreme	were shown		
	11:16am	9.31mW	Extreme			
	11.22am	4.51mW	Extreme			
	11:26am	5.21mW	Extreme			

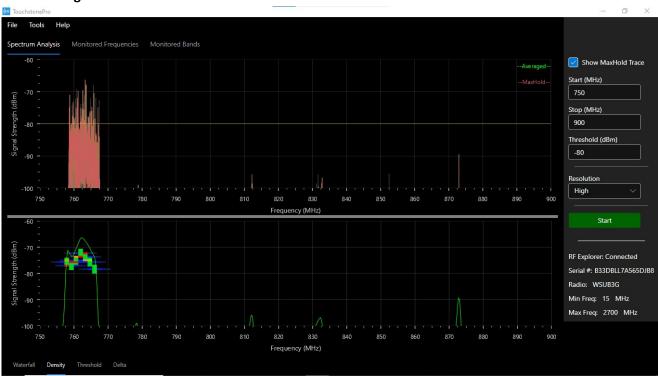


INDOOR RF EXPLORER SCAN

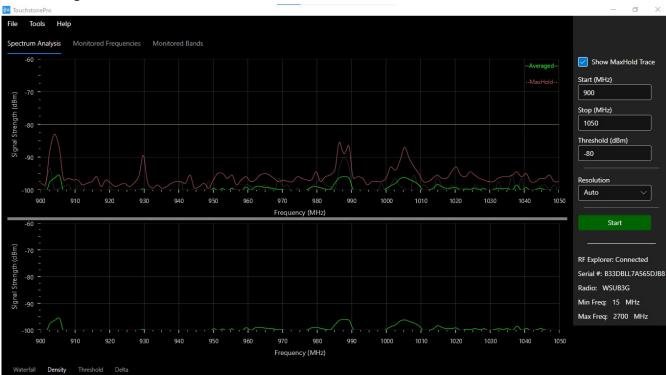
6/1/2023				
	Peak			
	Frequency			
Time AM	MHz	dBm	uW	Image
9:27	584.77466	-73	0.00005	1 & 2
	585.94583	-71	0.000079	1&2
	587.117	-72	0.000063	1&2
9:40	627	-58	0.001584	3
	630	-58	0.001584	3
9:42	758.753024	-71	0.000079	4
	765.841425	-71	0.000079	4
9:54	989.1891	-86	0.000002	5
9:57	1124.32425	-94	0.0000003	6
9:59	1348.6485	-76	0.000025	7
10:07	1348.6485	-76	0.000025	8
	1437.8376	-78	0.000015	8
10:19	1600	-82	0.000006	9
10:24	1964.8647	-60	0.000999	10
10:41	2481.081	-56	0.002511	11
10:52	4884.05402	-76	0.000025	12
11:04	4935.1351	-70	0.000099	13
11:10	5205.4054	-71	0.000079	14
11:15	5521.6216	-80	0.00001	15
	5586.4864	-80	0.00001	15
11:23	6097.297	-69	0.000125	16

9:27am Image 1

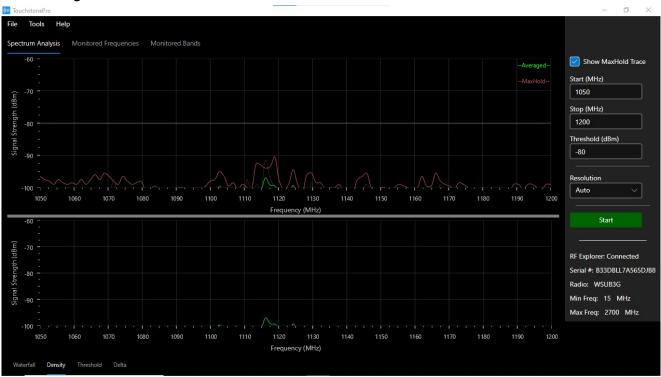

9:27am Image 2


<u>frank@gratefuldowsing.com</u> <u>www.environmentalhealingservices.com</u> 8509 Bryant Avenue South, Bloomington, MN 55420 www.gratefuldowsing.com 612-384-1334

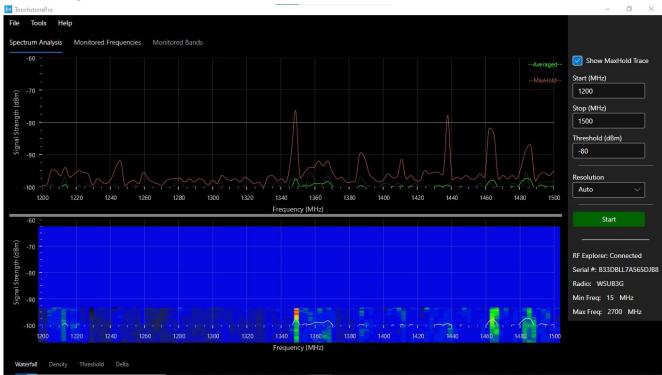
9:40am Image 3



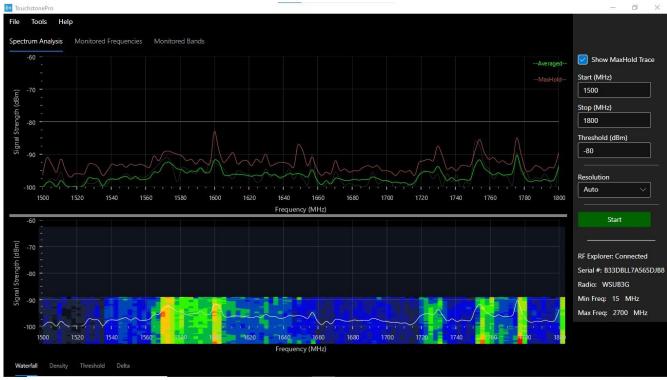
9:42am Image 4



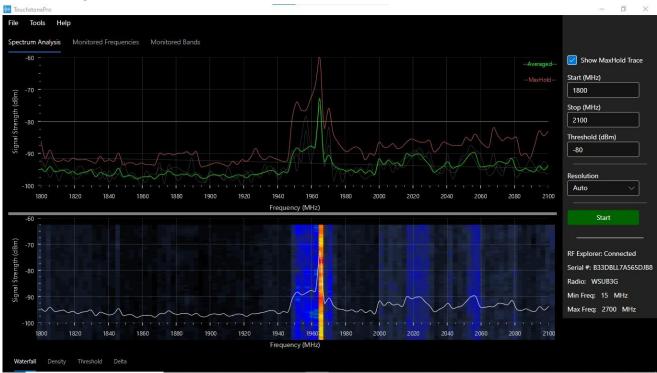
9:54am Image 5



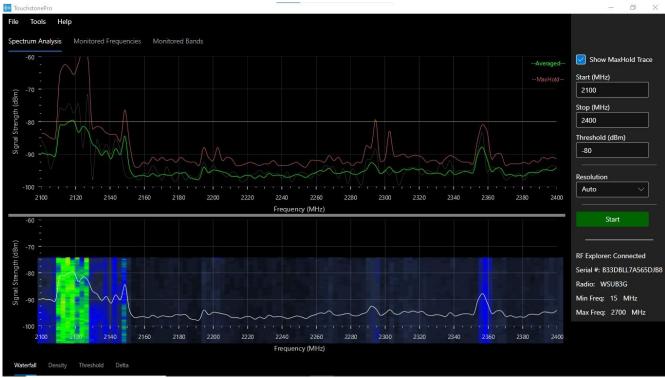
9:57am Image 6



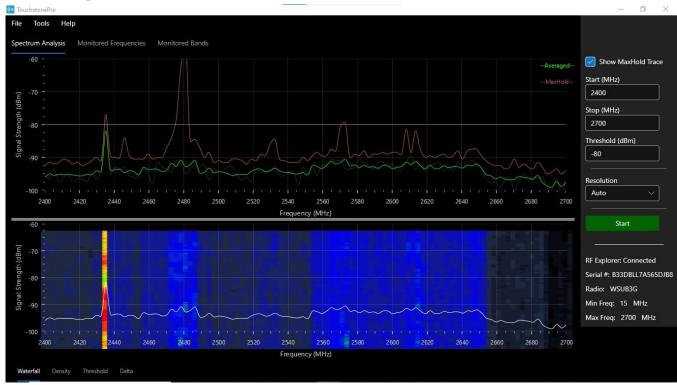
9:59am Image 7



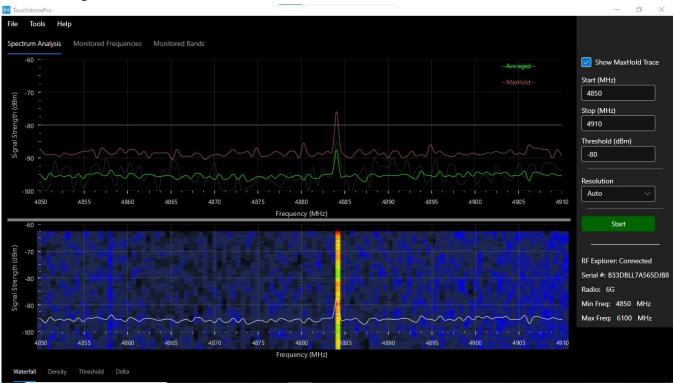
10:07 am Image 8



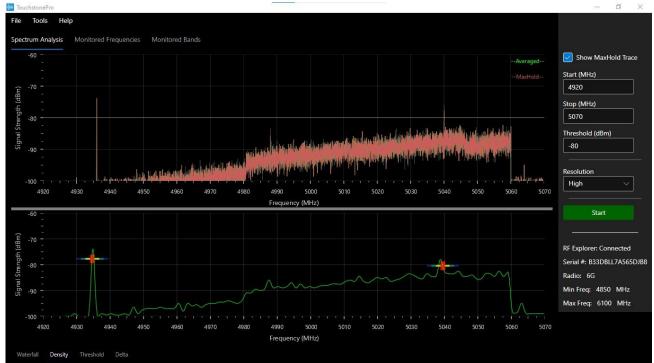
10:19am Image 9



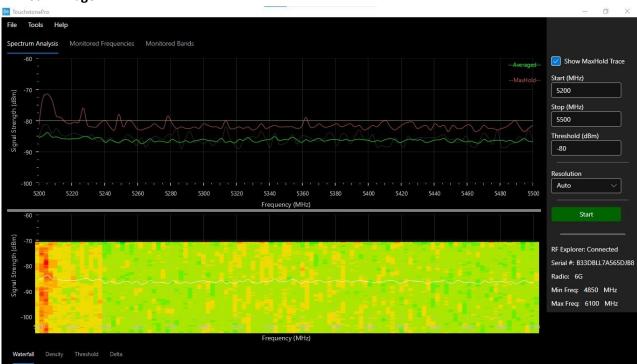
10:24am Image 10



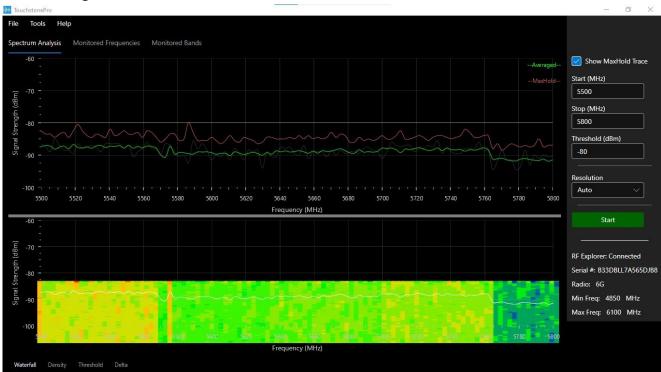
10:41am Image 11



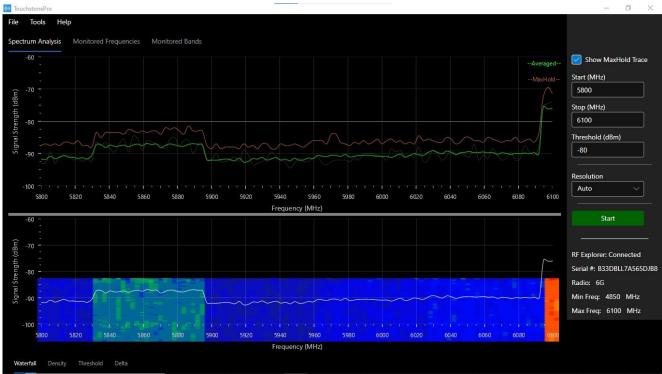
10:52am Image 12



11:04am Image 13



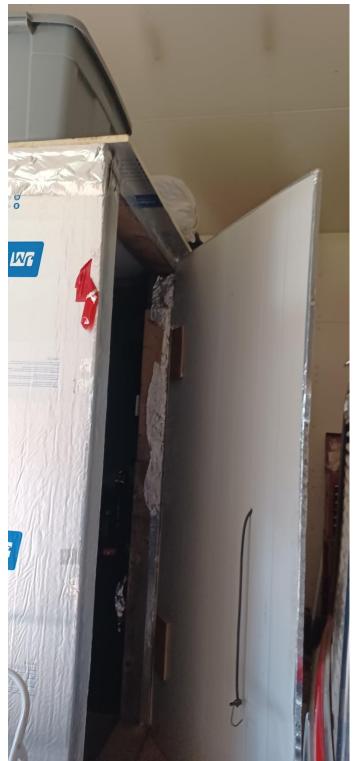
11:10am Image 14



11:15am Image 15

11:23am Image 16

Homemade Faraday cage/ sleeping area



Another view of Faraday cage

View of entry door of Faraday cage

Readings inside Faraday cage taken at Macia Hallers bed Trifield meter was reading 0; HF59B was reading 4.2 uW (decimal point not visible in picture)

2nd scan Trifield meter was reading 0, HF59B was reading 3.4 uW (decimal point not visible in picture)

Halller Residence RF Measurement 5/3-6/1/2023 Notes

I arrived at the Haller's property at 3:30pm and was met by Marcia Haller (owner).

I spoke briefly about what I was going to do and then proceeded to setup my table with my meters and laptop computer. I chose the edge of their back yard clearing so as to capture the RF signals from the closest I could get to the tower without having to venture into the woods. This clearing I considered to be part of their useable property and made sense to start recording here.

I setup a wooden TV tray with a boom mount stand attached to the TV tray top. I used double stick tape to position the two meters, a Gigahertz Solutions HF59B with the 3.3MHZ antenna and a RF Explorer 6G Combo spectrum analyzer. The RF Explorer was also connected to my Dell Laptop so as to be able to do the scans on a larger monitor and record the data. That data is in the suppled spreadsheets.

I began running scans at approximately 4:30pm until about 6:30pm (or so). Then Jay Haller came home around 7pm. We talked a bit about my findings and discussed different areas of the yard that he has seen higher readings. He and his wife also showed me their home built Faraday cage. We discussed their sleeping and living habits as well as how things were feeling overall. Marcia remarked that some days are worse that others and on those days she retreats to the "cave" (what they called the faraday cage). She says she starts to feel better even after a few minutes in there.

I measured the RF exposure in there and it was extremely low. Their Trifield meter measured 0mW while my HF59B measured 3.4uW (see pictures)

Jay then helped me take readings from the edge of the clearing and out to the road. We paced our markers at approximately every 20'. We started out at the edge of the clearing and walked towards the road in a straight line (as much as possible). We used the HF59B at 1st because "juggling" the two meters, writing the data down and fending off the bugs was getting to be a challenge. When we reached the edge of the road, we used the Trifield meter and repeated the steps back towards the edge of the clearing closest to the tower.

One of the things I noticed was that at this time, the readings were lower and seemed not as frequent as when I was out at the property back in Oct. 2020. There were some occasional peaks I noticed that were similar to the 2020 measurements (see data spreadsheet).

I also believe a return trip with a high frequency meter capable of measuring the 24-40GHz band is also needs to be done. Currently the new meters to measure this band are just coming to market. As soon as one is available, I will purchase one so I will be able to measure the mm bands that are starting to be deployed.

I attempted some high-resolution scans which gave a more pulsed view of the scan rather the "waveform" look of the lower resolution. This type of scan took much longer due to the scan bandwidth was half of the lower resolution scan. High resolution bandwidth was only 150MHz compared to 300MHz of the lower resolution.

My laptop was put into airplane mode after I logged into the software server to confirm software registration as was my cell phone. I had Marcia Haller turn off or put her phone into airplane mode as well. I did measure a couple of neighbors Wi-Fi routers which is seen in the pictures of my laptop display.

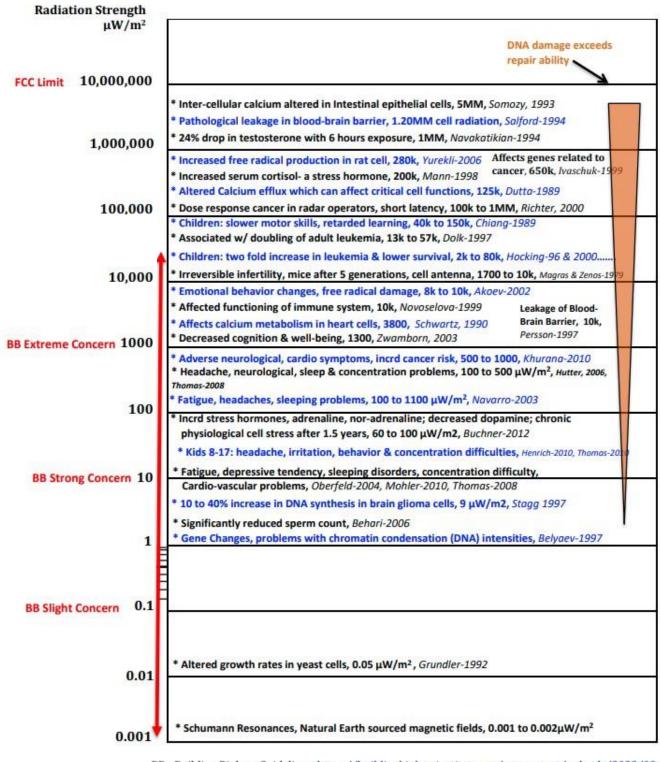
Use of HF59B and the RF Explorer will show that with the HF59B the readings are much higher. This is due to the broad bandwidth this meter captures with, whereas the RF Explorer which is a spectrum analyzer, measures specific bandwidths. This may make it appear that the exposure is minimal where in fact it is quite large. Each bandwidth measured can contain several thousand data points. In the coarse setting the RF Explorer measures a 300 MHz bandwidth and records 112 data points in the high resolution mode the bandwidth is 150 MHz wide and measures 6048 data points. These are the respective peaks of all signals measured.

The scan data measured is in dBM. This was translated to uW or mW readings using an online calculator fr0m a ham radio site https://m0ukd.com/calculators/dbm-dbw-uw-mw-watt-kw-mw-calculator/

I also spoke with both Jay and Marcia to keep using their Trifield meter and logging their measurements, time of day and location as well as a daily log of how Marcia feels. I feel that even though this is what she considers is her "normal" that it is still not acceptable. From what they told me is that they have been sleeping in the faraday cage for two years plus. I was also told that she cannot stay in the house for long period of time or out and about on the property. Marcia is better equipped to go into detail about her condition.

I found both Marcia and Jay Haller very well versed on RF exposure and EHS symptoms. They have taken many precautions in reducing their exposure in their house, around the property and especially with their faraday cage.

This concludes my commentary; the rest of the information is supplied in this report.


Frank DiCristina BBEC, EMRS

6/2/23

Reported Biological Effects of RF Radiation

For consideration with your physician

BB= Building Biology Guidelines, https://buildingbiologyinstitute.org/wp-content/uploads/2023/03/ SBM_2015-v1.pdf

Reported Biological Effects from Radiofrequency Radiation at Low-Intensity Exposure (Cell Tower, Wi-Fi, Wireless Laptop and 'Smart' Meter RF Intensities)

	Power Density (Microwatts/centime	eter2 - uW/cm2)	Reference	
	As low as (10 ⁻¹³) or 100 femtowatts/cm2	Super-low intensity RFR effects at MW reasonant frequencies resulted in changes in genes; problems with chromatin conformation (DNA)	Belyaev, 1997	
	5 picowatts/cm2 (10- 12)	Changed growth rates in yeast cells	Grundler, 1992	
$3.4 \ \mu W/m^2$	0.1 nanowatt/cm2 (10- ¹⁰) or 100 picowatts/cm2	Super-low intensity RFR effects at MW reasonant frequencies resulted in changes in genes; problems with chromatin condensation (DNA) intensities comparable to base stations	Belyaev, 1997	
6 μW/m ²	0.00034 uW/cm2	Chronic exposure to mobile phone pulsed RF significantly reduced sperm count,	Behari, 2006	
oμw/m	0.0005 uW/cm2	RFR decreased cell proliferation at 960 MHz GSM 217 Hz for 30-min exposure	Velizarov, 1999	
	0.0006 - 0.0128 uW/cm2	Fatigue, depressive tendency, sleeping disorders, concentration difficulties, cardio- vascular problems reported with exposure to GSM 900/1800 MHz cell phone signal at base station level exposures.	Oberfeld, 2004	
	0.003 - 0.02 uW/cm2	In children and adolescents (8-17 yrs) short-term exposure caused headache, irritation, concentration difficulties in school.	Heinrich, 2010	
50 μW/m ²	0.003 to 0.05 uW/cm2	In children and adolescents (8-17 yrs) short-term exposure caused conduct problems in school (behavioral problems)	Thomas, 2010	
	0.005 uW/cm2	In adults (30-60 yrs) chronic exposure caused sleep disturbances, (but not significantly increased across the entire population)	Mohler, 2010	
	0.005 - 0.04 uW/cm2	Adults exposed to short-term cell phone radiation reported headaches, concentration difficulties (differences not significant, but elevated)	Thomas, 2008	
$100 \ \mu W/m^2$	0.006 - 0.01 uW/cm2	Chronic exposure to base station RF (whole-body) in humans showed increased stress hormones; dopamine levels substantially decreased; higher levels of adrenaline and nor-adrenaline; dose-response seen; produced chronic physiological stress in cells even after 1.5 years.	Buchner, 2012	
	0.01 - 0.11 uW/cm2	RFR from cell towers caused fatigue, headaches, sleeping problems	Navarro, 2003	
	Power Density (Microwatts/centimeter2 - uW/cm2)			
		eter2 - uW/cm2)	Reference	
		eter2 - uW/cm2) Adults (18-91 yrs) with short-term exposure to GSM cell phone radiation reported headache, neurological problems, sleep and concentration problems.	Reference Hutter, 2006	
	(Microwatts/centime	Adults (18-91 yrs) with short-term exposure to GSM cell phone radiation reported headache, neurological		
150 μW/m ²	(Microwatts/centime 0.01 - 0.05 uW/cm2	Adults (18-91 yrs) with short-term exposure to GSM cell phone radiation reported headache, neurological problems, sleep and concentration problems. Adults exposed to short-term cell phone radiation reported headaches, concentration difficulties (differences not	Hutter, 2006	
150 μW/m ²	(Microwatts/centime 0.01 - 0.05 uW/cm2 0.005 - 0.04 uW/cm2	Adults (18-91 yrs) with short-term exposure to GSM cell phone radiation reported headache, neurological problems, sleep and concentration problems. Adults exposed to short-term cell phone radiation reported headaches, concentration difficulties (differences not significant, but elevated) Adults exposed to short-term GSM 900 radiation reported changes in mental state (e.g., calmness) but	Hutter, 2006 Thomas, 2008	
150 μW/m ² 500 μW/m ²	(Microwatts/centime 0.01 - 0.05 uW/cm2 0.005 - 0.04 uW/cm2 0.015 - 0.21 uW/cm2	Adults (18-91 yrs) with short-term exposure to GSM cell phone radiation reported headache, neurological problems, sleep and concentration problems. Adults exposed to short-term cell phone radiation reported headaches, concentration difficulties (differences not significant, but elevated) Adults exposed to short-term GSM 900 radiation reported changes in mental state (e.g., calmness) but limitations of study on language descriptors prevented refined word choices (stupified, zoned-out)	Hutter, 2006 Thomas, 2008 Augner, 2009	
	(Microwatts/centime 0.01 - 0.05 uW/cm2 0.005 - 0.04 uW/cm2 0.015 - 0.21 uW/cm2 0.05 - 0.1 uW/cm2	Adults (18-91 yrs) with short-term exposure to GSM cell phone radiation reported headache, neurological problems, sleep and concentration problems. Adults exposed to short-term cell phone radiation reported headaches, concentration difficulties (differences not significant, but elevated) Adults exposed to short-term GSM 900 radiation reported changes in mental state (e.g., calmness) but limitations of study on language descriptors prevented refined word choices (stupified, zoned-out) RFR linked to adverse neurological, cardio symptoms and cancer risk	Hutter, 2006 Thomas, 2008 Augner, 2009 Khurana, 2010	
	(Microwatts/centime 0.01 - 0.05 uW/cm2 0.005 - 0.04 uW/cm2 0.015 - 0.21 uW/cm2 0.05 - 0.1 uW/cm2 0.05 - 0.1 uW/cm2	Adults (18-91 yrs) with short-term exposure to GSM cell phone radiation reported headache, neurological problems, sleep and concentration problems. Adults exposed to short-term cell phone radiation reported headaches, concentration difficulties (differences not significant, but elevated) Adults exposed to short-term GSM 900 radiation reported changes in mental state (e.g., calmness) but limitations of study on language descriptors prevented refined word choices (stupified, zoned-out) RFR linked to adverse neurological, cardio symptoms and cancer risk RFR related to headache, concentration and sleeping problems, fatigue Sperm head abnormalities in mice exposed for 6-months to base station level RF/MW. Sperm head abnormalities occurred in 39% to 46% exposed mice (only 2% in controls) abnormalities was also found to be dose dependent. The implications of the pin-bead and banam-shaped sperm head. The occurrence of sperm head observed increase occurrence of sperm head and banam-shaped sperm head. The occurrence of sperm head observed increase occurrence of sperm head observed increase occurrence of sperm head and banam-shaped sperm head. The occurrence of sperm head observed increase occurrence of sperm head observed increase occurrence of sperm head and banam-shaped sperm head. The occurrence of sperm head observed increase occurrence of sperm head and banam-shaped sperm head. The occurrence of sperm head observed increase occurrence of sperm head and banamis head sperm head. The occurrence of sperm head observed increase occurrence of sperm head and banamis head sperm head. The occurrence of sperm head and banamis head sperm head. The occurrence of sperm head and banamis head sperm head. The occurrence of sperm head and banamis head sperm head banamis head sperm head observed increase occurrence of sperm head and banamis head sperm head and banamis head sperm head and banamis head sperm head banamis head sperm head head banamis head sperm head banamis head sperm head banamis head sperm head banamis head sperm	Hutter, 2006 Thomas, 2008 Augner, 2009 Khurana, 2010 Kundi, 2009	
	(Microwatts/centime 0.01 - 0.05 uW/cm2 0.005 - 0.04 uW/cm2 0.015 - 0.21 uW/cm2 0.05 - 0.1 uW/cm2 0.05 - 0.1 uW/cm2 0.07 - 0.1 uW/cm2	Adults (18-91 yrs) with short-term exposure to GSM cell phone radiation reported headache, neurological problems, sleep and concentration problems. Adults exposed to short-term cell phone radiation reported headaches, concentration difficulties (differences not significant, but elevated) Adults exposed to short-term GSM 900 radiation reported changes in mental state (e.g., calmness) but limitations of study on language descriptors prevented refined word choices (stupified, zoned-out) RFR linked to adverse neurological, cardio symptoms and cancer risk RFR related to headache, concentration and sleeping problems, fatigue Sperm head abnormalities in mice exposed for 6-months to base station level RF/NW. Sperm head abnormalities occurred in 39% to 46% exposed mice (only 2% in controls) abnormalities was also found to be dose dependent. The implications of the privesal and banara-shaped sperm head. The occurrence of sperm head abnormalities on the reproductive health of humans living in close proximity to GSM base stations were discussed."	Hutter, 2006 Thomas, 2008 Augner, 2009 Khurana, 2010 Kundi, 2009 Otitoloju, 2010	
500 μW/m ²	(Microwatts/centime 0.01 - 0.05 uW/cm2 0.005 - 0.04 uW/cm2 0.015 - 0.21 uW/cm2 0.05 - 0.1 uW/cm2 0.05 - 0.1 uW/cm2 0.07 - 0.1 uW/cm2 0.38 uW/cm2	Adults (18-91 yrs) with short-term exposure to GSM cell phone radiation reported headache, neurological problems, sleep and concentration problems. Adults exposed to short-term cell phone radiation reported headaches, concentration difficulties (differences not significant, but elevated) Adults exposed to short-term GSM 900 radiation reported changes in mental state (e.g., calmness) but limitations of study on language descriptors prevented refined word choices (stupified, zoned-out) RFR linked to adverse neurological, cardio symptoms and cancer risk RFR related to headache, concentration and sleeping problems, fatigue Sperm head abnormalities in mice exposed for 6-months to base station level RF/NW. Sperm head abnormalities occurred in 39% to 46% exposed mice (only 2% in controls) abnormalities was also found to be dose dependent. The implications of the pin-head and banana-shaped sperm head. The occurrence of sperm head abnormalities on the reproductive health of humans living in close proximity to GSM base stations were discussed."	Hutter, 2006 Thomas, 2008 Augner, 2009 Khurana, 2010 Kundi, 2009 Otitoloju, 2010 Schwartz, 1990	
	(Microwatts/centime 0.01 - 0.05 uW/cm2 0.005 - 0.04 uW/cm2 0.015 - 0.21 uW/cm2 0.05 - 0.1 uW/cm2 0.05 - 0.1 uW/cm2 0.07 - 0.1 uW/cm2 0.38 uW/cm2 0.38 uW/cm2	Adults (18-91 yrs) with short-term exposure to GSM cell phone radiation reported headache, neurological problems, sleep and concentration problems. Adults exposed to short-term cell phone radiation reported headaches, concentration difficulties (differences not significant, but elevated) Adults exposed to short-term GSM 900 radiation reported headaches, concentration difficulties (differences not significant, but elevated) Adults exposed to short-term GSM 900 radiation reported changes in mental state (e.g., calmness) but limitations of study on language descriptors prevented refined word choices (stupified, zoned-out) RFR linked to adverse neurological, cardio symptoms and cancer risk RFR related to headache, concentration and sleeping problems, fatigue Sperm head abnormalities in mice exposed for 6-months to base station level RF/NW. Sperm head abnormalities occurrence of sperm head abnormalities on the reproductive health of humans living in close proximity to GSM base stations of the pin-head abnormalities on the reproductive health of humans living in close proximity to GSM base stations in heart cells RFR affected calcium metabolism in heart cells RFR caused emotional behavior changes, free-radical damage by super-weak MWs	Hutter, 2006 Thomas, 2008 Augner, 2009 Khurana, 2010 Kundi, 2009 Otitoloju, 2010 Schwartz, 1990 Akoev, 2002	
500 μW/m ²	(Microwatts/centime 0.01 - 0.05 uW/cm2 0.005 - 0.04 uW/cm2 0.015 - 0.21 uW/cm2 0.05 - 0.1 uW/cm2 0.07 - 0.1 uW/cm2 0.38 uW/cm2 0.38 uW/cm2 0.13 uW/cm2	Adults (18-91 yrs) with short-term exposure to GSM cell phone radiation reported headache, neurological problems, sleep and concentration problems. Adults exposed to short-term cell phone radiation reported headaches, concentration difficulties (differences not significant, but elevated) Adults exposed to short-term GSM 900 radiation reported headaches, concentration difficulties (differences not significant, but elevated) Adults exposed to short-term GSM 900 radiation reported changes in mental state (e.g., calmness) but limitations of study on language descriptors prevented refined word choices (stupified, zoned-out) RFR linked to adverse neurological, cardio symptoms and cancer risk RFR related to headache, concentration and sleeping problems, fatigue Sperm head abnormalities in mice exposed for 6-months to base station level RF/MW. Sperm head abnormalities occurrence of sperm head abnormalities on the reproductive health of humans living in close proximity to GSM base stations were discussed." RFR caused emotional behavior changes, free-radical damage by super-weak MWs RFR rom 3G cell towers decreased cognition, well-being	Hutter, 2006 Thomas, 2008 Augner, 2009 Khurana, 2010 Kundi, 2009 Otitoloju, 2010 Otitoloju, 2010 Schwartz, 1990 Akoev, 2002 Zwamborn, 2003	
500 μW/m ²	(Microwatts/centime 0.01 - 0.05 uW/cm2 0.005 - 0.04 uW/cm2 0.015 - 0.21 uW/cm2 0.05 - 0.1 uW/cm2 0.05 - 0.1 uW/cm2 0.07 - 0.1 uW/cm2 0.38 uW/cm2 0.38 uW/cm2 0.13 uW/cm2 0.16 uW/cm2 0.16 - 1.053	Adults (18-91 yrs) with short-term exposure to GSM cell phone radiation reported headache, neurological problems, sleep and concentration problems. Adults exposed to short-term cell phone radiation reported headaches, concentration difficulties (differences not significant, but elevated) Adults exposed to short-term GSM 900 radiation reported changes in mental state (e.g., calmness) but limitations of study on language descriptors prevented refined word choices (stupified, zoned-out) RFR linked to adverse neurological, cardio symptoms and cancer risk RFR related to headache, concentration and sleeping problems, fatigue Sperm head abnormalities in mice exposed for 6-months to base station level RF/NW. Sperm head abnormalities occurred in 39% to 46% exposed mice (only 2% in controls) abnormalities was also found to be dose dependent. The implications of the pin-head and abnormalities on the reproductive health of humans living in close proximity to GSM base stations were discussed." RFR affected calcium metabolism in heart cells RFR caused emotional behavior changes, free-radical damage by super-weak MWs RFR mom 3G cell towers decreased cognition, well-being Motor function, memory and attention of school children affected (Latvia)	Hutter, 2006 Thomas, 2008 Augner, 2009 Khurana, 2010 Kundi, 2009 Otitoloju, 2010 Otitoloju, 2010 Schwartz, 1990 Akoev, 2002 Zwamborn, 2003 Kolodynski, 1996 Magras & Zenos,	
500 μW/m ²	(Microwatts/centime 0.01 - 0.05 uW/cm2 0.005 - 0.04 uW/cm2 0.015 - 0.21 uW/cm2 0.05 - 0.1 uW/cm2 0.05 - 0.1 uW/cm2 0.07 - 0.1 uW/cm2 0.38 uW/cm2 0.38 uW/cm2 0.16 uW/cm2 0.16 uW/cm2 0.16 - 1.053 uW/cm2	Adults (18-91 yrs) with short-term exposure to GSM cell phone radiation reported headache, neurological problems, sleep and concentration problems. Adults exposed to short-term cell phone radiation reported headaches, concentration difficulties (differences not significant, but elevated) Adults exposed to short-term GSM 900 radiation reported changes in mental state (e.g., calmness) but limitations of study on language descriptors prevented refined word choices (stupified, zoned-out) RFR linked to adverse neurological, cardio symptoms and cancer risk RFR related to headache, concentration and sleeping problems, fatigue Sperm head abnormalities in mice exposed for 6-months to base station level RF/MW. Sperm head abnormalities occurrence of sperm head abnormalities on the reproductive health of humans living in close proximity to GSM base stations were discussed." RFR caused emotional behavior changes, free-radical damage by super-weak MWs RFR from 3G cell towers decreased cognition, well-being Motor function, memory and attention of school children affected (Latvia) Irreversible infertility in mice after 5 generations of exposure to RFR from an 'antenna park'	Hutter, 2006 Thomas, 2008 Augner, 2009 Khurana, 2010 Kundi, 2009 Otitoloju, 2010 Otitoloju, 2010 Schwartz, 1990 Akoev, 2002 Zwamborn, 2003 Kolodynski, 1996 Magras & Zenos, 1997	

Stress proteins, HSP, disrupted immune function	Brain tumors and blood-brain barrier	
Reproduction/fertility effects	Sleep, neuron firing rate, EEG, memory, learning, behavior	
Oxidative damage/ROS/DNA damage/DNA repair failure	Cancer (other than brain), cell proliferation	
Disrupted calcium metabolism	Cardiac, heart muscle, blood-pressure, vascular effects	

Environmental Healing Services

	Power Density (Microwatts/centin	neter2 - uW/cm2)	Reference
	0.5 uW/cm2	Significant degeneration of seminiferous epithelium in mice at 2.45 GHz, 30-40 min.	Saunders, 1981
$10,000 \ \mu W/m^2$	0.5 - 1.0 uW/cm2	Wi-FI level laptop exposure for 4-hr resulted in decrease in sperm viability, DNA fragmentation with sperm samples placed in petri dishes under a laptop connected via WI-FI to the internet.	Avendano, 2012
	1.0 uW/cm2	RFR induced pathological leakage of the blood-brain barrier	Persson, 1997
	1.0 uW/cm2	RFR caused significant effect on immune function in mice	Fesenko, 1999
	1.0 uW/cm2	RFR affected function of the immune system	Novoselova, 1999
	1.0 uW/cm2	Short-term (30 min) exposure in electrosensitive patients, caused loss of well-being after GSM and especially UMTS cell phone radiation exposure	Eltiti, 2007
	1.3 - 5.7 uW/cm2	RFR associated with a doubling of leukemia in adults	Dolk, 1997
15,000 µW/m ²	1.25 uW/cm2	RFR exposure affected kidney development in rats (in-utero exposure)	Pyrpasopoulou, 2004
	1.5 uW/cm2	RFR reduced memory function in rats	Netby, 2007
20,000 µW/m ²	2 uW/cm2	RFR induced double-strand DNA damage in rat brain cells	Kesari, 2008
10,000 µ W/III-	2.5 uW/cm2	RFR affected calcium concentrations in heart muscle cells	Wolke, 1996
	2 - 4 uW/cm2	Altered cell membranes; acetycholine-induced ion channel disruption	D'Inzeo, 1988
10 000	4 uW/cm2	RFR caused changes in hippocampus (brain memory and learning)	Tattersall, 2001
40,000 μW/m ²	4 - 15 uW/cm2	Memory impairment, slowed motor skills and retarded learning in children	Chiang, 1989
	5 uW/cm2	RFR caused drop in NK lymphocytes (immune function decreased)	Bascolo, 2001
0.000	5.25 uW/cm2	20 minutes of RFR at cell tower frequencies induced cell stress response	Kwee, 2001
50,000 μW/m ²	5 - 10 u/w/cm2	RFR caused impaired nervous system activity	Dumansky, 1974
	6 uW/cm2	RFR induced DNA damage in cells	Phillips, 1998
	Power Density (Microwatts/centin	neter2 · uW/cm2)	Reference
	8.75 uW/cm2	RFR at 900 MHz for 2-12 hours caused DNA breaks in leukemia cells	Marinelli, 2004
00,000	10 uW/cm2	Changes in behavior (avoidance) after 0.5 hour exposure to pulsed RFR	Navakatikian, 19
1W/m ²	10 - 100 vW/cm2	Increased risk in radar operators of cancer; very short latency period; dose response to exposure level of RFR reported.	Richter, 2000
	12.5 uW/cm2	RFR caused calcium efflux in cells - can affect many critical cell functions	Dutta, 1989
200,000	13.5 uW/cm2	RFR affected human lymphocytes - induced stress response in cells	Sarimov, 2004
W/m ²	20 uW/cm2	Increase in serum cortisol (a stress hormone)	Mann, 1998
	28.2 uW/cm2	RFR increased free radical production in rat cells	Yurekli, 2006
	37.5 uW/cm2	Immune system effects - elevation of PFC count (antibody producing cells	Veyret, 1991
500 000	45 uW/cm2	Pulsed RFR affected serum testosterone levels in mice	Forgacs, 2006
500,000	50 uW/cm2	Cell phone RFR caused a pathological leakage of the blood-brain barrier in 1 hour	Salford, 2003
1W/m ²	50 uW/cm2	An 18% reduction in REM sleep (important to memory and learning functions)	Mann, 1996
	60 uW/cm2	RFR caused structural changes in cells of mouse embryos	Somozy, 1991
500,000	60 uW/cm2	Pulsed RFR affected immune function in white blood cells	Stankiewicz, 200
IW/m ²	60 uW/cm2	Cortex of the brain was activated by 15 minutes of 902 MHz cell phone	Lebedeva, 2000
	65 uW/cm2	RFR affected genes related to cancer	Ivaschuk, 1999
	92.5 uW/cm2	RFR caused genetic changes in human white blood cells	Belyaev, 2005
,000,000	100 uW/cm2	Changes in immune function	Elekes, 1996
W/m ²	100 uW/cm2	A 24.3% drop in testosterone after 6 hours of CW RFR exposure	Navakatikian, 19
W / III	120 uW/cm2	A pathological leakage in the blood-brain barrier with 915 MHz cell RF	Salford, 1994
	Power Density		22.22
000 000	(Microwatts/centin	meter2 - uW/cm2)	Reference
5,000,000	500 uW/cm2	Intestinal epithelial cells exposed to 2.45 GHz pulsed at 16 Hz showed changes in intercellular calcium.	Somozy, 1993
tW/m ²	500 uW/cm2	A 24.6% drop in testosterone and 23.2% drop in insulin after 12 hrs of pulsed RFR exposure.	Navakatikian, 19
	STANDARDS		
	530 - 600 uW/cm2	Limit for uncontrolled public exposure to 800-900 MHz	ANSI/IEEE and FO
	1000 uW/cm2	PCS STANDARD for public exposure (as of September 1,1997)	FCC, 1996
	5000 uW/cm2 BACKGROUND LEVI	PCS STANDARD for occupational exposure (as of September 1, 1997) ELS	FCC, 1996
	0.003 uW/cm2	Background RF levels in US cities and suburbs in the 1990s	Mantiply, 1997
	0.05 uW/cm2	Median ambient power density in cities in Sweden (30-2000 MHz)	Hamnierius, 2000
	0.1 - 10 uW/cm2	Ambient power density within 100-200' of cell site in US (data from 2000)	Sage, 2000

www.gratefuldowsing.com 612-384-1334

Grateful Dowsing

Environmental Healing Services

The TriField EMF Meter Model TF2 is an AC gaussmeter, AC electric field meter, and radio power density meter in a single unit, that combines all the features needed for fast, accurate measurements of electromagnetic fields (EMF). In addition to standard AC measurement modes, a special frequency weighted mode will properly scale the magnetic and electric measurements to indicate the full magnitude of currents produced by each type of field inside the human body.

Features:

- Detects all three types of EMF pollution: AC magnetic, AC electric, and RF/microwave
- Special frequency weighting mode for measuring electric current from EMF in the human body
- AC Magnetic Mode covers 40 Hz 100 kHz with range of 0.1 – 100.0 milligauss (mG)
- AC Electric Mode covers 40 Hz 100 kHz with range of 1 – 1000 volts per meter (V/m)
- RF Mode covers 20 MHz 6 GHz with range of 0.001 – 19.999 milliwatts per square meter (mW/m2)
- AC magnetic measurements are 3axis, allowing for quick readings, regardless of meter orientation
- Large liquid-crystal display (LCD) for crystal clear, accurate readings
- Adjustable backlight for use in lowlight environments
- Audio Indicator emits sound that helps to pinpoint EMF sources
- Peak Hold captures fast pulses, for measuring fast digital signals
- Operates for more than 20 hours on a 9V battery, with a low battery indicator

Technical specifications:

Frequency Range:	27 Mhz to 3.3 Ghz	
Measurement range 1:	Fine: 0.01 to 19.99 µW/m ² ~ – 70 dBm	
Measurement range 2:	Medium: 0.1 – 199.9 µW/m² ~ – 60 dBm	
Measurement range 3:	Course: 10 – 19,999 µW/m² ~ – 50 dBm	
Attenuation:	Modules available to extend the scales in increments of 20db	
Antennas:	HF59B comes with standard true logarithmic periodic antenna	
	800 Mhz to 3.3 Ghz. HFE59B Meter Kit also includes UBB27	
	Omnidirectional / Isotropic 360 degree antenna 27 Mhz to 3.3	
	Ghz. Both are horizontally and vertically polarized and polar-	
	ized for improved h/v decoupling and minimized ripple.	
	Compensated log./per. antenna for signals under 800 Mhz	
Signal Evaluation:	True Peak and Average	
Accuracy:	+/-3.0 dB	
Linearity Deviation:	+/-3.0 dB	
Rollover:	+ / - 5 digits	
Dimensions:	71 x 225 x 31 mm (W x L x H) approx 2–3/4 x 9 x 1.25 inches	
Weight:	Approx. 270 grams	
Case Material:	Plastic	

Environmental Healing Services

RF Explorer 6G Combo

Compliance

All RF Explorer models are complaint with FCC as well as CE regulations. All RF Explorer Wideband models have been certified under EN/IEC61236 and EN/IEC61000.

All RF Explorer models are RoHS compliant

Wide band coverage to all popular RF frequencies, starting at 15MHz and going up to 2.7GHz, as well as 4.85-6.1GHz. This include very interesting frequency areas such as 2m HAM radio, all VHF and UHF, FM radio, GPS, WiFi and WiMax, Bluetooth, etc. Frequency band: 15-2700 MHz and 4850-6100MHz Frequency span: Left SMA port (6G): 2-600Mhz Right SMA port (WSUB3G): 112KHz - 600MHz Left SMA port (6G): 4850-6100MHz Right SMA port (WSUB3G): 15-2700 MHz Amplitude resolution: 0.5dBm Dynamic range: Left SMA port (6G): -105dBm to -15dBm Right SMA port (WSUB3G): -110dBm to -10dBm Absolute Max input power: Left SMA port (6G): +25dBm Right SMA port (WSUB3G): +30dBm Average noise level (typical): -105dBm Frequency stability and accuracy (typical): Left SMA port (6G): +-0.5ppm Right SMA port (WSUB3G): +-10ppm Amplitude stability and accuracy (typical): Left SMA port (6G): +-3dBm Right SMA port (WSUB3G): +-6dBm Frequency resolution: 1Khz? Resolution bandwidth (RBW): Left SMA port (6G): automatic 58Khz to 812Khz Right SMA port (WSUB3G): automatic 3Khz to 600Khz

Touchstone-Pro

RF Spectrum Analyzer Software for RF Explorer

Touchstone-Pro software turns data collected from RF Explorer spectrum analyzers into highly graphical charts and displays, enabling users to more readily visualize the RF environment, monitor RF signals, troubleshoot RF issues, and detect sources of RF interference.

In addition to running as a standalone, handheld device, RF Explorer can be connected to a PC where software (e.g. Touchstone) is used to provide enhanced functionality and data analysis. The connection is made using a mini USB cable. (NOTE: A high quality USB cable should be used in order to limit EMC interference from the PC that could influence your measurements.)

Touchstone-Pro runs natively under Windows and MacOS architectures -- both Intel x64 and Apple Silicon (M1/M2). When you register a license key it becomes associated with the serial number (S/N) of a specific RF Explorer device and NOT a machine. As a result, you can install the Windows and MacOS software on as many machines as you like.

Touchstone-Pro offers a variety of diagnostic views of the data captured by the RF Explorer device. Employing multiple views of the data enhances your ability to gain a better understanding of the local, RF landscape.

The RF Explorer hand-held spectrum analyzer is an amazing and unique device. Combined with **Touchstone-Pro** software you now have an RF diagnostic tool unmatched in price and performance. Armed with the ability to monitor RF signals, detect RF interference and view all RF activity that occurs in your environment, solving wireless problems.

Education, training and Job experience:

Sewanhaka Vocational High School Electronics

Red Wing Technical College Electronic Technology

Efcor Industries Industrial and maintenance mechanic

Fairchild Republic Aviation (A10 tank support plane) Cockpit and control panel test technician

Allen Avionics (RF Filter manufacture) Electronic test technician

Automotive Technology (mobile electronics) Alarm and cell phone installation technician

Fieldworks/Kontron (Industrial/ Military computers) Engineering, repair, test technician Field service technician and field service training instructor

Institute of Building Biology Certified Building Biology and Ecology Consultant 2013 Electromagnetic Radiation Specialist 2015 Advanced Electromagnetic instructor 2010 and 2011 Program Director 2010-2012