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Abstract 

 

 COVID-19 death rates per 100,000 vary widely across the nation.  As of September 1, 
2020, they range from a low of 4 in Hawaii to a high of 179 in New Jersey.  Although academic 
research has been conducted at the county and metropolitan levels, no research has rigorously 
examined or identified the demographic and socioeconomic forces that explain state-level 
differences.  This study presents an empirical model and the results of regression tests that help 
identify these forces and shed light on the role they play in explaining COVID-19 deaths. 
 A stepwise regression model we tested exhibits a high degree of explanatory power.  It 
suggests that two measures of density explain most of the state-level differences.  Less 
significant variables included the poverty rate and racial/ethnic differences.  We also found that 
variables relating to health, air travel, and government mandates were not significant in 
explaining COVID-19 deaths at the state level. 
 This study also examines the elasticities of those variables we found significant.  We 
measured both average and constant elasticities to determine the relationship between changes in 
COVID-19 deaths and percentage changes in the relevant explanatory variables.  In an analysis 
of residuals, we found that the unexplained variation was found to be related mainly to factors 
site-specific to individual states. 
 Unlike the empirical results of several academic studies, our model found that the density 
of a state is the most important factor explaining COVID-19 deaths.  The role that density plays 
in the transmission of COVID-19 has important policy implications in responding to the 
challenges posed by the coronavirus and future pandemics. 
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Introduction 

A number of academic studies have studied the impact of demographic and 
socioeconomic forces on the incidence of COVID-19.  These studies have focused attention on 
counties and metropolitan statistical areas (Hamidi, Sabouri, and Ewing, 2020; Liu et al., 2020;  
Wheaton and Thompson, 2020).  No academic research, however, has examined or identified the 
variables that explain state-level differences in COVID-19 death rates.  Although the print and 
electronic media have extensively reported on differences among states (Tavernise and Mervosh, 
New York Times, 2020; Olsen, Washington Post, 2019; Rosenthal, New York Times, 2020), these 
reports are largely anecdotal and lack academic rigor. 

State-level COVID-19 death rates vary widely.  As shown in the rank ordering of Table 1, 
cumulative death rates per 100,000 people as of September 1, 2020, range from a low of 4 in 
Hawaii to a high of 179 in New Jersey.  The mean cumulative death rate for all 50 states was 
44.9, with a standard deviation of 39.84.  Figure 1 shows that the mean death rate for all 50 states 
has increased in a linear-like manner from April 1, 2020, to September 1, 2020. 
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TABLE 1 
  

As of September 1, 2020 
 

   
 

Rank 
 
State 

COVID Death Rates 
per 100,000 people 

1 Hawaii 4 
2 Alaska 5 
3 Wyoming  6 
4 Vermont 9 
5 Maine 10 
6 Montana  10 
7 Oregon 11 
8 West Virginia 12 
9 Utah 13 

10 Kansas 15 
11 North Dakota 19 
12 South Dakota 19 
13 Wisconsin 19 
14 Idaho 20 
15 Nebraska 20 
16 Oklahoma 20 
17 Kentucky 21 
18 Missouri 25 
19 Washington 25 
20 Arkansas 26 
21 North Carolina 26 
22 Tennessee 26 
23 Virginia 30 
24 New Hampshire 32 
25 California 33 
26 Minnesota 33 
27 Colorado 34 
28 Iowa 35 
29 Ohio 35 
30 New Mexico 37 
31 Nevada 42 
32 Alabama 44 
33 Texas 44 
34 Indiana 49 
35 Florida 52 
36 Georgia 53 
37 South Carolina 53 
38 Pennsylvania 60 
39 Delaware 62 
40 Maryland 62 
41 Illinois 65 
42 Michigan 68 
43 Arizona 69 
44 Mississippi 82 
45 Rhode Island 99 
46 Louisiana 106 
47 Connecticut 125 
48 Massachusetts 131 
49 New York 169 
50 New Jersey 179 
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Although no state-level studies for COVD-19 have been published, a survey of SSRN 
showed 4,334 studies dealing with the coronavirus.  Of those, 2,531 papers relate to public 
health, legal, economic, societal, and fiscal implications. 

Several of these studies focus attention on the impact of density on COVID-19 infection 
and death rates.  Hamidi, Sabouri, and Ewing (2020), for example, conclude that their most 
important finding is “that density is unrelated to confirmed virus infection rates and inversely 
related to confirmed virus death rates” (page 11).  They conclude that “COVID-19 death rates are 
lower in dense counties and higher in less dense counties (page 12).  Wheaton and Thompson’s 
(2020) findings reveal that density and the total number of infections are inversely related, but 
that density has no significant effect when the infection rate serves as the dependent variable. 
 Given the commonly accepted view that greater social interaction leads to higher 
COVID-19 infections and deaths, the fact that these peer-reviewed studies do not empirically 
support that view seems anomalous. 
 These findings have important implications for socioeconomic planning and policies.  As 
Hamidi, Sabouri, and Ewing (2020) conclude: 
 

The fact that density is unrelated to confirmed virus infection rates and 
inversely related to confirmed death rates is important, unexpected and profound.  
It has important implications for community design, … and nearly every other 
front-burner issue important to planners. (2020, page 12) 

 
In the study to follow, we hope to shed light not only on how density and other 

factors are associated with the COVID-19 death rate, but also why our findings differ 
from the conclusions reached in previous studies. 

We present an empirical model and the results of regression tests to explain these 
differences in death rates at the state level. The tests regress state-level COVID-19 death rates 
against hypothesized demographic and socioeconomic explanatory variables.  Those variables 
found to be significant in this study will also shed light on the role these variables play in 
explaining COVID-19 deaths. 

 
The Model 

We selected the cumulative COVID-19 death rate per 100,000 people by state as of 
September 1, 2020, to serve as our dependent variable.  A death is defined as a person dying that 
tested positive for the coronavirus no matter a person’s preexisting health conditions.  COVID-19 
virus infection rates were not included in our study because of potential biases due to state-level 
differences in testing methodologies and people’s varying access to such tests.  For that reason, 
we focused on the death rate.  The structural form of our model is shown below in equation(1). 
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Di = b0 + b1(x1,i) + b2(x2,i) + … + bn(xn,i)    (1) 

 where: 

  Di = Cumulative COVID-19 death rates per 100,000 in state i as  
         of September 1, 2020. 

  x1 … xn  = 1 … n independent variables in state i 

  b0, b1 … bn = n parameters to be estimated and error terms are suppressed 

 Equation (1)  can also be estimated in exponential form using natural logs (ln). 

In order to control and test for the factors that explain COVID-19 death rates by state, we 
selected demographic and socioeconomic variables, as shown in Table 2 and below in equation 
(2). 

 
 Deathratei =bo  ∑ bd3

d=1   Densityi +  ∑ by2
y=1   Incomei + … 

 
        + … ∑ br3

r=1  Racial/Ethnici + ∑ bh4
h=1  Healthi + … 

 
        + …  ∑ ba2

a=1  Air Traveli +  ∑ bm3
m=1  Mandatesi  (2) 

where: 
 
 Deathratei = Cumulative COVID-19 deaths per 100,000 in statei as  
                                 of September 1, 2020  
 
 bo, bd … bm = Parameters to be estimated 
 
error terms are suppressed, and the independent variables are as shown in Table 2. 
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Table 2.   Dependent and independent variables used in the study

Dependent variable

Description Name Mean SD CV Min Max Obs. Source
Death rates from coronavirus (COVID-19) in the US as of 
09/01/20, by state (per 100,000 people)

deathrate 44.88 39.84 88.77 4.00 177.00 50 https://www.statista.com/statistics/1109011
/coronavirus-covid19-death-rates-us-by-
state/

Independent variables

I.   Density variables
Population density per square mile density 202.65 266.24 131.38 1.30 1207.80 50 https://worldpopulationreview.com/state-

rankings/state-densities

Super density per square mile sdensity 342.98 1610.69 469.62 0.00 11076.00 50 https://en.wikipedia.org/wiki/List_of_United
_States_cities_by_population_density

Urban population as a percentage of the total 
population

urbanpop 0.74 0.15 20.27 0.39 0.95 50 https://en.wikipedia.org/wiki/Urbanization_i
n_the_United_States

     
II.   Income variables

Per Capita Personal Income (000) py 54.50 8.80 16.15 39.36 79.09 50 https://fred.stlouisfed.org/release/tables?rid=
151&eid=257197

Poverty rate poverty 0.14 0.04 28.57 0.07 0.27 50 https://en.wikipedia.org/wiki/List_of_U.S._st
ates_and_territories_by_poverty_rate

III.  Racial/Ethnic variables  

Black or  African American Population as a percent of 
the total population

afram 10.51 9.55 90.87 0.40 37.60 50 https://worldpopulationreview.com/states/st
ates-by-race

Hispanic population as a percentage of the total 
population

hispanic 11.74 10.34 88.07 1.50 48.54 50 https://worldpopulationreview.com/state-
rankings/hispanic-population-by-state

Asian population as a percentage of the total population asian 4.18 5.53 132.30 0.76 37.75 50 https://worldpopulationreview.com/state-
rankings/asian-population

IV.  Health related variables

Percentage of population aged 65 or over age65 16.49 1.88 11.40 11.10 20.60 50 https://www.prb.org/which-us-states-are-the-
oldest/

Obesity rate, percent of obese adults (BMI of 30+) obesity 30.75 3.73 12.13 22.60 38.10 50 https://worldpopulationreview.com/state-
rankings/obesity-rate-by-state

Diabetes mortality rate, number of deaths per 100,000 
total population 

diabetes 21.95 4.39 20.00 14.60 36.20 50 https://www.cdc.gov/nchs/pressroom/sosma
p/diabetes_mortality/diabetes.htm

Smoking Rate, percent of persons who smoke smokers 17.33 3.50 20.20 8.90 26.00 50 https://worldpopulationreview.com/state-
rankings/smoking-rates-by-state

V.    Air Travel 

Domestic passenger air traffic arrivals to top 40 US 
gateway cities from June 2018 to March 2019 as a 
percent of the total population

darrival 2.10 4.29 204.29 0.00 19.00 50 https://www.transportation.gov/policy/aviati
on-policy/us-international-air-passenger-and-
freight-statistics-report

Foreign passenger air traffic arrivals to top 40 US 
gateway cities from June 2018 to March 2019 as a 
percent of the total population

farrival 2.29 6.09 265.94 0.00 31.94 50 https://www.transportation.gov/policy/aviati
on-policy/us-international-air-passenger-and-
freight-statistics-report

VI.    Mandates

Number of days from March 12 to Sept. 1 before state-
level mandates on wearing masks were imposed

mask 123.60 43.98 35.58 35.00 171.00 50 https://www.aarp.org/health/healthy-
living/info-2020/states-mask-mandates-
coronavirus.html

Number of categories (gathering, schools, restaurants, 
non-essential business, and stay-at-home orders) from 0 
to 5 where states enacted restrictions within 30 days of 
March 12, 2020 

enact 3.44 1.16 33.72 1.00 5.00 50 https://www.medrxiv.org/content/10.1101/2
020.03.30.20046326v1

Social distancing index that represents the extent 
residents and visitors practiced social distancing where 
"0" indicates no social distancing while "100" indicates 
all residents stayed at home.

distance 30.12 9.51 31.57 17.00 57.00 50 https://data.covid.umd.edu/
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Empirical Findings 
 
 The results of the regression tests are presented in Table 3.  A stepwise model was 
used to add demographic and socioeconomics independent variables to the regression 
tests arranged in groupings from I to VI, as shown in Tables 2 and 3.  In most cases, 
variables were removed if not significant at the p < 0.10 level (one-tailed). 

Analyses of the explanatory power of the variables included in groupings I to VI are 
presented below. 
 

I. Density Variables 
 
We added a super density variable (sdensity) to our regression tests because 

density, as generally measured, does not adequately control for its impact on a state-level 
basis. A state’s density (density) is defined as the population of that state divided by its 
total geographic area in square miles or as shown in Table 2: “population density per 
square mile.”  That measure is relevant for most states but not for those states where a 
highly populated metropolitan area exhibits extremely high density.  In those instances, 
the true nature of a metropolitan area’s density is obscured when dividing by the entire 
land area of a state.  For example, New York City’s density is the ratio of its population of 
8.2 million (2010 census) and its land area of 302.6 square miles.  The resulting density 
of New York City of 27,016 compares to New York state’s density of 169.  Using a state-
level density of 169 for New York state would miss the impact of the extraordinarily high 
rate of density for the city. 

In order to capture that impact on a state-level basis, we selected all metropolitan 
areas in the nation with a population of 300,000 or more that had a population density of 
at least 10,000 people per square mile.  We then took the population of those metropolitan 
areas as a ratio of each state’s total population.  The resulting ratio, in turn, was 
multiplied by the density of the metropolitan areas that met the selection criteria 
presented above. 

As shown in Table 3, both density variables (density and sdensity) were highly 
significant.  The urbanization variable (urbanpop) had the expected positive sign of 
association but was not significant.  That result is not surprising since urbanization is 
defined to measure the proportion of people who live in geographic clusters of 50,000 or 
more population.  No distinction is made in that definition regarding density.  Since the 
spread of COVID-19 is expected to increase when there is close contact, urbanization is 
too broadly defined to adequately account for virus transmission. Our reason for adding it 
as a variable in our tests is because the print and electronic media continue to use 
urbanization as a major factor in explaining the spread of the coronavirus (Wharton, 
2020; and Klaus, 2020).  Our regression results suggest its use should be curtailed.  Not 
only did we find that the coefficient for urbanpop insignificant, but when it was removed 
as an explanatory variable from the regression equation, the R2 term remained virtually 
unchanged at 0.73. 
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Table 3.   Regression results,  dependent variable: Deathrate (COVID-19 deaths per 100,000 people by state)

Equation 1 Equation 2 Equation 3 Equation 4 Equation 5 Equation 6

R-squared 0.73 0.79 0.83 0.83 0.83 0.84
Constant 14.54 -40.23 -8.91 19.13 -8.96 -34.52

I.  Density variables:
density 0.10 0.10 0.10 0.10 0.1 0.1

(7.63) *** (8.06) *** (9.90) *** (8.33) *** (9.22) *** (9.06) ***
sdensity 0.01 0.01 0.01 0.01 0.01 0.01

(4.75) *** (4.48) *** (5.58) *** 5.17 *** (4.60) *** (5.02) ***
urbanpop 8.59

(0.35)
II.  Income variables

py 0.37
(0.75)

poverty 295.25 149.4 174.82 148.94 169.57
(3.35) *** (1.95) ** (1.94) ** (1.87) ** (2.16) **

III.  Racial/Ethnic variables
afram 0.75 0.74 0.75 0.75

(2.41) *** (2.07) ** (2.33) *** (2.39) ***
hispanic 0.39 0.32 0.39 0.29

(1.46) * (0.96) (1.39) ** (1.05)
Asian -0.88 -0.99 -0.82 -1.24

(-1.81) ** (-1.84) ** (-0.81) (-2.05) *

IV.  Health related varibles
age65 -0.95

(-0.60)
obesity -0.11

(0.28)
diabetes -0.08

(-0.69)
smoker 0.24

(0.17)

V.  Air travel variables
darrival 520881

(-0.42)
farrival 1090947

(-0.08)

VI.  Mandates
mask 0.05

(0.65)
enact 2.31

(0.84)
distance 0.38

(0.98)

Notes:  t statistics in parentheses. *p‹0.10,   **p‹0.05,   ***p‹0.01 (one-tailed test)
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What is particularly noteworthy about the two highly significant density variables 

is that they explain most of the variation in state-level COVID-19 death rates.  Even for 
statistical outliers like New Jersey and New York, the regression equation (not reported 
here) with only density and sdensity as independent variables explains most of the 
variation (actual of 179 for New Jersey versus predicted of 149) and (actual of 169 for 
New York versus predicted of 167). 

These results suggest that the extremely high density of New York City explains 
its high death rate rather than whether its crisis planning or containment policies were 
effective.  This observed significance of the density variables is in sharp contrast to the 
results of the studies cited earlier.  The reason for these contrasting empirical results is 
likely related to different methodological approaches as well as the timeliness of the data.  
Our study, for example, is at the state level and covers COVID-19 deaths through 
September 1, 2020, while all other academic studies focus at the county and/or MSA 
levels over earlier time periods. 

Perhaps a more important factor that accounts for the differences in how density 
affects COVID-19 is model specification.  When Wheaton and Thompson (2020) added 
population as an explanatory variable to the regression equation that also includes 
density, the density variable is no longer significant.  That does not necessarily mean that 
density is not a significant factor in explaining COVID-19 infections (cases).  More 
likely, the population serves as a proxy for density at the MSA and county levels.  As a 
result, collinearity between population and density may account for the loss of density’s 
explanatory power.  Indeed, the explanatory power of density is robust (p < .01) in the 
Wheaton and Thompson (2020) study when the population variable is not included in 
their equation. 

Hamid, Sabouri, and Ewing (2020) examined the impact of population and 
density on COVID-19 infection and deaths at the county level.  The regression results 
suggest that density at the county level is not significant, while population at the MSA 
level is significant in explaining infection rates.  The density variable is significant in 
explaining the death rate, but its sign is negative instead of positive, suggesting that 
higher density decreases rather than increases COVID-19 death rates.  The authors 
suggest that this may be due to “better access to health facilities and easier management 
of social distancing  interventions such as sheltering in place.” (Hamidi, Sabouri and 
Ewing, 2020, page 12) 

We believe the insignificance of density in explaining infections and the 
significant negative relationship in explaining death rates in Hamidi, Sabouri, and 
Ewing’s findings are the result of their model’s construct.  In their regression tests of the 
impact on the rate of COVID-19 infections by county, the density of a county is used as 
well as the population of the MSA within which the county is located as another 
explanatory variable. 
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We concur that the demographic characteristics of the MSA are more important in 

explaining COVID-19 infection and death rates than county-level characteristics.  But in 
their structural equation model (SEM), MSA population likely serves as a proxy for 
density at the MSA level.  Hamidi. Sabouri and Ewing’s conclusion that density is not 
significant in explaining COVID infection rates may be due to the collinear relationship 
between population and density at the MSA level.  This possibility can be tested by 
replacing the population variable with density at the MSA level. 

In their SEM tests of COVID-19 deaths, Hamidi, Sabouri, and Ewing test both the 
infection rate and death rate. They initially measure the virus infection rate.  Then in 
measuring the death rate, they use the infection rate as an independent variable in 
explaining the death rate.  But when the infection rate is included as a variable in 
explaining COVID-19 deaths, its explanatory power is so significant (coefficient = 0.97 
and measured t ratio = 35.39), little unexplained variable is left for the density variable.  
As a result, we believe their conclusion that higher (lower) county density results in 
lower (higher) COVID-19 deaths is suspect. 

Even though our findings are at the state rather than county level and our 
empirical approach uses ordinary least squares rather than SEM, we believe that 
replacing population with density at the MSA level in the Hamidi, Sabour, and Ewing 
tests will restore density as a significant variable in positively explaining COVID-19 
infection and death rates. 

This view is supported by subsequent regression tests in our formulation.  When 
our density variables are replaced by population at the state level, the population variable 
is significant but at a lower level than density.  In addition, the explanatory power of the 
equation drops sharply. 

The lower significance of the population as compared to density in our tests is not 
surprising.  The states of Maryland and Missouri, for example, have virtually the same 
population of 6.1 million.  But since Missouri is seven times larger than Maryland, its 
density of 89.3 p/m2 is much lower than Maryland’s 622.9 p/m2.  One would expect that 
in spite of their equal populations, Maryland is more vulnerable to the coronavirus than 
Missouri because of its higher relative density.  That expected vulnerability will not be 
captured if population rather than density serves as the explanatory variable. 

Similarly, this problem also exists at the county and MSA levels.  If two MSA’s 
have the same population but different densities, the use of population in place of density 
as the relevant explanatory variable would suggest that both MSA’s are equally 
vulnerable to the coronavirus.  Given that one of the MSA’s has a higher density, that is 
not likely to be the case. 

But before meaningful conclusions can be reached about the relationship between 
density and the COVID-19 death rate, it is necessary to control for the impact of other 
socioeconomic factors.  We do that in our stepwise methodological approach by initially 
adding the “Income Variables” grouping (see Table 2) to our regression tests. 
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II. Income Variables 

 
  Our findings, as shown in Table 3, show that per capita personal income (py) is 
not significant but that the poverty rate (poverty) is.  The poverty variable also had the 
expected positive sign of association.   
  The fact that the poverty variable is significant while the personal income variable 
is not can be explained by the collinear relationship between the two.  The Pearson 
correlation between poverty and personal income is -0.50 (p < 0.01).  Separate regression 
tests not reported here with only one of the variables included reveal that personal income 
has the expected negative sign of association but was not significant.  When poverty 
serves as the explanatory variable in place of personal income, it is positive, as expected, 
and is highly significant. 
  These empirical results suggest that the poverty rate at the state level is a more 
important variable than personal income levels in explaining COVID-19 death rates.  
This is consistent with literature that points to higher poverty rates as increasing the 
number of confirmed COVID-19 deaths (Finch and Finch, 2020; Ridgwell, 2020). 
  With respect to the per capita income variable (py), our results run counter to 
those studies that point to income as a significant positive or negative factor in explaining 
the coronavirus.  Hamidi, Sabouri, and Ewing’s empirical results, for example, show that 
counties with a higher percentage of college-educated have significantly lower infection 
rates.  They do not, however, include any variable representing poverty in their tests.  
Since higher education undoubtedly serves as a proxy for personal income, they may 
simply be picking up a spurious inverse association between higher education and 
infection rates because of the collinear relationship between income and poverty that we 
observed in our empirical findings. 
  Unlike Hamidi, Sabouri, and Ewing’s findings of an inverse relationship between 
the percentage of college-educated and COVID-19 infections, Wheaton and Thompson 
found a significant positive relationship between per capita income and coronavirus cases 
at the county and MSA levels.  The authors were surprised by this result and state, “It is 
tempting to suggest that perhaps dining out, entertaining, and socialization are all income 
elastic consumption items – items that also generate higher infection risk.  But we need 
further direct research before drawing that conclusion” (Wheaton and Thompson, 2020, 
page 9). 

Alternatively, our findings suggest that the collinear relationship between income 
and poverty should be taken into account in order to more accurately assess the impact of 
personal income. 
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III. Racial/Ethnic Variables 

 
   Most of the reported findings on the relationships between racial (ethnic) 

variables point to higher infection and death rates for African-Americans and Hispanics 
(Magnier, 2020; APM Research, 2020), but the findings on Asians are mixed.  Several 
studies point to higher rates of COVID-19 infections and fatalities (McKinsey & 
Company, 2020; Health Affairs, 2020), while others (Magnier, 2020; APM Research, 
2020) point to significantly lower rates.  These studies, however, do not control for the 
causal relationships of other demographic or socioeconomic variables like density and 
poverty. 

   The empirical findings shown in Table 3 point to a highly significant positive 
association between the percentages of African-American populations and COVID-19 
death rates at the state level.  The relationship is also positive for Hispanics but only 
marginally significant. 

   Our findings of an inverse association between Asians and COVID-19 deaths 
support those studies that pointed to higher (lower) percentages of Asians leading to 
lower (higher) rates of COVID-19 deaths at both the age and age-adjusted levels 
(Magnier, 2020; APM Research, 2020).  These inverse associations are consistent with 
anecdotal reports that Asians have healthier diets and consider the risks of COVID-19 
more seriously, leading Asians to be more inclined to self-administer social distancing 
measures. 

   We believe a more compelling argument for the lower death rates for Asians is 
related to their lower poverty rates.  This received empirical support in our study by the 
drop in explanatory power for the poverty variable when the racial/ethnic variables were 
added to the model.  Although the poverty variable is still significant, Table 3 shows that 
adding race and ethnicity to the regression tests reduced the measured t statistic for the 
poverty coefficient from 3.35 in equation (2) to 1.95 in the current equation (3). 

   In light of the positive correlation between African- American and poverty and 
Hispanics and poverty and the negative association between Asians and poverty as shown 
in Table 4, it should not be surprising that adding racial/ethnic variables to our equation 
reduced the explanatory power of the poverty variable.  What is more revealing, however, 
is that racial/ethnic variables in affecting COVID-19 death rates are still significant even 
after holding density and overall poverty rates constant.  This finding suggests that other 
racial/ethnic characteristics besides density and poverty are associated with the 
coronavirus. 
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  It should be noted that in our regression tests (Equation (3) to (6) in Table 3), we 
excluded the White racial category (white) in our racial/ethnic grouping because adding it 
would bring the equation close to a singular matrix. 
  Many have argued that the significant positive relationship between African-
Americans and Hispanics with COVID-19 deaths and the inverse association with Asians 
is because Asians have better health (lower rates of diabetes, obesity, and smoking) and 
diets.  That possibility suggests those variables need to be held constant before reaching 
any definitive conclusions about the relationship between race/ethnicity and the 
coronavirus. 

 
 

IV. Health-Related Variables 
 
None of the four health-related variables added to our equation tested as 

significant.  As shown in Table 3, all measured t’s were below one. 
The high degree of collinearity between obesity, diabetes, and smokers is 

reflected by Pearson correlation coefficients that range between 0.67 to 0.78.  Because of 
this high degree of correlation, we tested regression equations that added obesity, diabetes 
and smoking rates individually as separate explanatory variables.  Even in these 
equations (findings not reported here), the coefficients for each of the individual health-
related variables showed no significance. 

What is most surprising in these results is the lack of significant explanatory 
power for the variable representing the percentage of the population over 65.   We also 
tested the percentage of the population over 80 (not reported here) and obtained similar 
results that showed no significance between age and death rates. 

 

TABLE 4 
Pearson Correlation Coefficients between Poverty and  

Racial/Ethnic Composition 

Race/Ethnicity Poverty Measured t  

African- American 0.37        2.78 *** 

Hispanic 0.18 1.27 

Asian -0.10 -0.70 

Notes: *** indicates two-tailed significance at the 0.01 level. 
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As shown in Table 5, 79 percent of all COVID-19 deaths occurred in age cohorts 
of 65 and above.  With COVID-19 death rates disproportionally affecting those in older 
cohorts, one would expect that the age 65 variable would exhibit a significant positive 
relationship.  The fact that our empirical results reveal no significance seems anomalous, 
especially in light of findings in the Hamidi, Sabouri, and Ewing (2020) study.  Unlike 
our findings, their SEM tests for the impact of the percentage of population aged 60+ on 
both the virus rate and the death rates resulted in highly significant coefficients  
(p < .0001). 

 

 
Closer examination of the data, however, offers an explanation for the differing 

findings.  The scatter diagram in Figure 2 shows that the death rates at the state level 
occurred with mean state-level ages concentrated near the national average rather than at 
outlying values. 

 
 
 
 
 
 
 
 

TABLE 5 
Deaths Associated with COVID-19 by Age Group in the U.S.  

(September 23, 2020) 

Age Group No. of Deaths Percent of all Deaths 
Death Rate per 100,000 

People in  
Age Cohort 

All ages 188,470 100.00 57.61 
Under 1 year 20 0.01 0.52 
1 – 4 years 15 0.01 0.09 
5 – 14 years 31 0.02 0.08 
15 – 24 years 353 0.19 0.82 
25 – 34 years 1,457 0.77 3.19 
35 – 44 years 3,809 2.02 9.23 
45 – 54 years 10,057 5.34 24.16 
55 – 64 years 23,991 12.73 56.75 
65 – 74 years 40,613 21.55 133.19 
75 – 84 years 49,871 26.46 323.96 
85 years and over 58,253 30.91 890.11 
Source: https://www.cdc.gov/nchs/nvss/vsrr/covid_weekly/index.htm 
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These findings suggest there is not enough age dispersion in the state-level data 

for the regression equation to pick up any significant explanatory power.  At the county 
and metropolitan levels, however, the dispersion is greater, as reflected by a coefficient of 
variation (cv) of 21.6 in the Hamidi, Sabouri, and Ewing (2020) study for their age 60+ 
variable.  The cv for our 65+ variable (age65) at the state level is a lower 11.4.  That cv of 
11.4, as shown in Table 2, is the lowest cv value for any of the variables we tested. 

These results suggest that while age is clearly a significant factor in explaining 
county and metropolitan COVID-19 death rates, there is not enough age dispersion to 
accurately measure its impact in regression tests at the state level. 

 
 

V. Air Travel 
 

  Foreign and domestic travel is expected to increase the transmission of epidemics 
as greater connectivity leads to a faster spread of diseases from their originating locales 
(Neiderud, 2015).  Yet, Hamidi, Saboudi, and Ewing (2020) found that higher 
enplanement rates (annual enplanements in metropolitan area per 10,000 population) led 
to significantly lower rates of COVID-19 infections.  The authors explain these puzzling 
findings by suggesting that more globally connected metropolitan areas recognized the 
greater risks of viral transmission and consequently imposed travel restrictions earlier 
than they otherwise would.  In our tests, we separated enplanements to distinguish 
between the rate of domestic and foreign travelers.  Neither variable, however, was 
significant in our tests.   
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FIGURE 2
Death Rate for Aged 65 or Over Population 

at the State-Level
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  It is interesting to note that the Asian variable was no longer significant with the 
addition of enplanement rates.  This likely occurred because of the significant correlation 
between the Asian and the farrival variable.  Pearson’s correlation coefficient between the 
two variables is an extremely high 0.84.  This suggests that those states with a higher 
proportion of Asians also have a greater rate of foreign arrivals.  
   Although our results suggest that domestic and foreign passenger enplanements 
do not appear to have a significant impact on COVID-19 deaths at the state level, we 
believe more research is needed, especially in light of the limitations of our data.  The 
most current data we were able to obtain for both the rate of domestic and rate of foreign 
passenger arrivals are totals for the entire June 2018 to March 2019 period.  A more 
relevant period for testing would be the January 2020 to March 2020 period.  In addition, 
data that reflects the national origin of the international flight arrivals would provide 
helpful micro-oriented data. 

 
    

VI. Mandates 
 

  A great deal of controversy has arisen over the efficacy of governmental mandates 
that imposed various restrictions in order to control the spread of COVID-19.  An article 
in the New York Times (Erdbrink, New York Times, 2020) suggests that Sweden’s recent 
low caseload supports its relatively lax approach in responding to the coronavirus.  
Others argue that lower cumulative infections and death rates in neighboring Denmark 
and Norway, two nations that are responding with more aggressive government 
mandates, support the use of publicly imposed restrictions (Boston Review, 2020; 
Healthline, 2020). 
  We attempted to measure the effects of mandates on COVID-19 deaths in our 
model by testing the impact of three variables.  Those included, as shown in Table 2, the 
number of days from March 12 to September 1 before state-level measures were imposed 
on wearing masks (mask); a variable (enact) that represents the cumulative number (0 to 
5) of state-level mandates imposed within a 30-day period following March 12, 2020, a 
date where no mandates had yet been imposed; and a social distancing index (distance) 
that measures the degree to which people self-administered social distance practices. 
  If these measures were effective, one would expect when a state took longer to 
impose mask requirements (mask), it would result in a higher COVID-19 death rate.  In 
the early days, when the coronavirus began to be considered a serious health crisis, it 
might be expected that states that responded quickly by imposing restrictive measures 
would have a lower COVID-19 death rate.  And greater use of social distancing 
(distance) would also be expected to reduce the transmission, infection, and death from 
the disease. 
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  Equation (3) presents these hypothesized signs of association in functional form: 
 

                                         +           -             - 
Deathratei = f ( maski ,  enacti , distancei )   (3) 

 
  The empirical results of testing the above hypothesis in Equation 6 are shown in 
Table 3.  All three variables in the Mandate variables grouping are insignificant, with 
only the variable representing the number of days it took before a state-imposed mask 
requirement (mask) exhibiting the hypothesized positive sign of association. 
  But as in the case of the high degree of correlation among the health-related 
variables, the three mandate variables tested here also exhibit significant correlation.  The 
absolute value of Pearson’s correlation coefficients for these three variables ranges 
between 0.41 and 0.49. 
  Rather than test each of the variables separately in regression tests as we did for 
the health-related grouping, we constructed a “mandate score.”  This score is comprised 
of eight different mandates.  In addition to the three mandate variables shown in equation 
(3), we added variables relating to the number of days from March 12 it took for each 
state to place restrictions on social/religious gatherings, schools, restaurants, and 
establishing stay-at-home orders.  We also added a variable that measures the number of 
days from March 12 it took for each state to reopen (remove its mandates) (Lee, J. et al., 
New York Times, October 7, 2020).  In this case, it would be expected that keeping the 
mandates in place longer by reopening later would increase the mandate score.  Because 
some of these mandate variables are expressed in different units, it was necessary to 
construct standard normal values (z scores) with higher values reflecting more stringent 
mandates.  It should be noted that we equally weighted all eight mandate variables 
included in the final mandate score. 
  The resulting mandate scores are shown in Table 6.  Note in analyzing Table 6 
that states with rates of COVID-19 deaths exceeding 100 per 100,000 people all occurred 
in states that imposed more restrictive mandates.  This, of course, does not necessarily 
mean that mandates led to more deaths.  Simultaneity bias may be obscuring the real 
impact that mandates have on the coronavirus. 
  In a regression test (not reported here) where we replaced the three independent 
variables representing mandates (see equation 6 in Table 3) with the single-mandate score 
variable shown in Table 6, it was insignificant. 
  It may be that mandates are effective in reducing COVID-19 deaths, but that 
effectiveness is not revealed in regression tests because of reverse causation between the 
dependent variable and the independent variables.  Namely, state governments are likely 
to respond more aggressively in imposing mandates when higher rates of infections and 
deaths are observed.  The resulting simultaneity means that the measured coefficients are 
biased and no longer reflective of the causality postulated in our regression model. 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3731803



A MODEL TO EXPLAIN STATEWIDE DIFFERENCES IN COVID 19 DEATH RATES  19 

 

TABLE 6
Ranking of Mandates Scores by State

Rank State Mandate Score

COVID-19 Deaths 
per 100,000       
as of 9/1/20

1 New York 1.50 169
2 California 1.47 33
3 Hawaii 1.18 4
4 Illinois 1.15 65
5 Delaware 1.13 62
6 New Jersey 1.13 179
7 Washington 1.07 25
8 Connecticut 1.02 125
9 Michigan 0.98 68
10 Oregon 0.98 11
11 Massachusetts 0.82 131
12 Louisiana 0.66 106
13 Pennsylvania 0.57 60
14 Nevada 0.54 42
15 New Mexico 0.48 37
16 Ohio 0.46 35
17 Vermont 0.42 9
18 West Virginia 0.34 12
19 Maryland 0.26 62
20 Rhode Island 0.24 99
21 Virginia 0.22 30
22 Minnesota 0.15 33
23 Indiana -0.04 49
24 Kentucky -0.07 21
25 North Carolina -0.10 26
26 Maine -0.12 10
27 Colorado -0.12 34
28 Wisconsin -0.25 19
29 Utah -0.25 13
30 Arizona -0.28 69
31 New Hampshire -0.29 32
32 Florida -0.37 52
33 Montana -0.39 10
34 Alaska -0.46 5
35 Alabama -0.53 44
36 Texas -0.56 44
37 Kansas -0.57 15
38 Arkansas -0.58 26
39 North Dakota -0.60 19
40 Wyoming -0.77 6
41 Iowa -0.81 35
42 Nebraska -0.86 20
43 Oklahoma -0.86 20
44 Idaho -0.99 20
45 South Carolina -1.00 53
46 Missouri -1.03 25
47 South Dakota -1.10 19
48 Tennessee -1.12 26
49 Georgia -1.32 53
50 Mississippi -1.32 82

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3731803



A MODEL TO EXPLAIN STATEWIDE DIFFERENCES IN COVID 19 DEATH RATES  20 

 
  In order to control for the effects of simultaneity, we conducted a test where states 
exhibiting similar death rates at a particular point in time impose different mandates.  The 
resulting change in the death rates from that point in time to some future period would 
more likely exhibit one-way causation between the independent and dependent variables. 
  The empirical results shown in Figure 3 were obtained by arranging states in 
quintiles of 10 each based on the rank order of death rate as of May 1, 2020 (Figure 1 
shows that May 1, 2020, was the first month that death rates by the state reached sizable 
numbers).  We then ranked the ten states within each quantile based on the level of each 
state’s mandate score.  Finally, we calculated the mean in the death rate from May 1, 
2020, to September 1, 2020, within each quintile for the five states that had higher 
mandate scores and the five states with lower scores. 
  Notice in Figure 3 that in quintiles Q1 and Q4, states with higher mean mandate 
scores experienced higher increases in mean death rates.  But quintiles Q2, Q3, and Q5 
show that states with lower mandate scores had higher increases in mean death rates.  The 
fact that there is no general tendency for states with higher (lower) mandate scores to 
exhibit lower (higher) death rates suggests that, at least at the state level, the efficacy of 
impairing mandates is not empirically supported. 
 
 

 
 
Elasticities 
 
 The average elasticity, E, of the death rate with respect to density in our model is 
given by 
 

               E =   
∂deathratei 
∂densityi 

   densityi 
deathratei 
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In the structural form of our model, this can be derived by 
 

E = bd   
densityi 
deathratei 

     
 

where bd is the estimated coefficient for density, as shown in equation 3 in Table 
3, and the mean values of density and death rate are as shown in Table 2. 

 
E represents average elasticity and is therefore relevant only at the mean values of 

the dependent and independent variables. 
 
When the functional form of the structural equation is in exponential form such as 
 
   Deathrates = b0 (densitys)bd , 
 
It can be shown that the constant elasticity, E, can be expressed in the double 

logarithmic form (Doti and Adibi, 2019, page 385) as  
 

 E = 
∂deathrates
∂densitys

 * densitys
deathrates

 = b1b0(densitys)bd−1

deathrates
 = bd 

 
 The calculated average elasticities, E, and constant elasticities, E for density and 
the other variables estimated in equation 3 are present in Table 7.   
 

  
 

TABLE 7 

Independent 
Variable 

Average 
Elasticity 

𝐄𝐄 

% Change in Deathrate    
with respect to a +10% 

change in 
 Independent Variable 

Based on 𝐄𝐄 

 
Constant 
Elasticity 

E 

% Change in Deathrate 
with respect to a +10% 

change in  
Independent Variable 

Based on E 
density 0.45 +4.5 0.32 +3.2 
sdensity 0.07 +0.7 0.05 +0.5 
poverty 0.46 +4.6 0.27 +2.7 
afram 0.17 +1.7 0.25 +2.5 
Hispanic 0.10 +1.0 0.34 +3.4 
asian      -0.08 -0.8         -0.33                     -3.3 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3731803



A MODEL TO EXPLAIN STATEWIDE DIFFERENCES IN COVID 19 DEATH RATES  22 

The double logarithmic form of the regression equation upon which the constant 
elasticities shown in Table 7 are based has an R2 value of 0.70 versus the higher R2 value 
of 0.83 in the linear form of the equation (Equation 3 in Table 3).  In spite of the lower 
explanatory power of the double ln form of the equation, elasticities based on that 
equation have the advantage of being constant across different values of the independent 
variables. 
 Their drawback is that the estimated coefficients are not as reliable, given the 
lower explanatory power of the regression equation in double ln form.  Nonetheless, the 
fact that the E and E values are fairly close suggests that the E values do not change 
appreciably at different values of the independent variable and, therefore, can serve as 
proxies for E. 
 
 
Analysis of Residuals 
 
 The actual and estimated death rates and residuals for all 50 states based on 
Equation 3 in Table 3 are presented in Table 8.  The high degree of the equation’s 
explanatory power is shown in Figure 4 that compares quartiles of the actual mean death 
rates with the corresponding regression mean “fitted” rates arranged from the highest to 
the lowest quartile. 
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TABLE 8
Actual Mean Death Rates Versus Regression Mean  Estimates

Obs State Actual Fitted Residual
1 Alabama 44.0000 46.6550 -2.6550 |        .  *|   .        |
2 Alaska 5.0000 8.9567 -3.9567 |        .  *|   .        |
3 Arizona 69.0000 42.1055 26.8945 |        .   |   . *      |
4 Arkansas 26.0000 38.7600 -12.7600 |        .*  |   .        |
5 California 33.0000 52.3787 -19.3787 |        *   |   .        |
6 Colorado 34.0000 24.0690 9.9310 |        .   | * .        |
7 Connecticut 125.0000 93.6639 31.3361 |        .   |   . *      |
8 Delaware 62.0000 78.2704 -16.2704 |        .*  |   .        |
9 Florida 52.0000 76.0205 -24.0205 |       *.   |   .        |

10 Georgia 53.0000 61.7662 -8.7662 |        . * |   .        |
11 Hawaii 4.0000 5.1574 -1.1574 |        .   *   .        |
12 Idaho 20.0000 18.2117 1.7883 |        .   *   .        |
13 Illinois 65.0000 69.2476 -4.2476 |        .  *|   .        |
14 Indiana 49.0000 42.8239 6.1761 |        .   |*  .        |
15 Iowa 35.0000 15.9712 19.0288 |        .   |   *        |
16 Kansas 15.0000 21.9477 -6.9477 |        .  *|   .        |
17 Kentucky 21.0000 34.5494 -13.5494 |        .*  |   .        |
18 Louisiana 106.0000 48.2430 57.7570 |        .   |   .       *|
19 Maine 10.0000 13.5731 -3.5731 |        .  *|   .        |
20 Maryland 62.0000 90.8079 -28.8079 |      * .   |   .        |
21 Massachussetts 131.0000 116.6884 14.3116 |        .   |  *.        |
22 Michigan 68.0000 60.3778 7.6222 |        .   | * .        |
23 Minnesota 33.0000 18.9281 14.0719 |        .   |  *.        |
24 Mississippi 82.0000 60.8768 21.1232 |        .   |   *        |
25 Missouri 25.0000 32.2854 -7.2854 |        . * |   .        |
26 Montana 10.0000 13.1112 -3.1112 |        .  *|   .        |
27 Nebraska 20.0000 14.2926 5.7074 |        .   |*  .        |
28 Nevada 42.0000 24.2155 17.7845 |        .   |   *        |
29 New Hampshire 32.0000 21.1675 10.8325 |        .   | * .        |
30 New Jersey 179.0000 146.7645 32.2355 |        .   |   .  *     |
31 New Mexico 37.0000 41.2282 -4.2282 |        .  *|   .        |
32 New York 169.0000 168.8001 0.1999 |        .   *   .        |
33 North Carolina 26.0000 56.1802 -30.1802 |      * .   |   .        |
34 North Dakota 19.0000 10.5045 8.4955 |        .   | * .        |
35 Ohio 35.0000 49.7762 -14.7762 |        .*  |   .        |
36 Oklahoma 20.0000 24.1632 -4.1632 |        .  *|   .        |
37 Oregon 11.0000 8.9327 2.0673 |        .   *   .        |
38 Pennsylvania 60.0000 57.7678 2.2322 |        .   |*  .        |
39 Rhode Island 99.0000 125.0627 -26.0627 |       *.   |   .        |
40 South Carolina 53.0000 50.7270 2.2730 |        .   |*  .        |
41 South Dakota 19.0000 15.1061 3.8939 |        .   |*  .        |
42 Tennessee 26.0000 46.4216 -20.4216 |        *   |   .        |
43 Texas 44.0000 48.7495 -4.7495 |        .  *|   .        |
44 Utah 13.0000 13.9963 -0.9963 |        .   *   .        |
45 Vermont 9.0000 12.8418 -3.8418 |        .  *|   .        |
46 Virginia 30.0000 42.1161 -12.1161 |        . * |   .        |
47 Washington 25.0000 21.1239 3.8761 |        .   |*  .        |
48 West Virginia 12.0000 25.3393 -13.3393 |        .*  |   .        |
49 Wisconsin 19.0000 23.8279 -4.8279 |        .  *|   .        |
50 Wyoming 6.0000 9.4481 -3.4481 |        .  *|   .        |

Residual Plot
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 The states whose estimated death rates deviated more than ±1.5 standard errors 
(±26.4) from the actual values are shown in Table 9. 
 

 
 
 One might question why the actual death rates in the states shown in Table 9 
deviated more sharply from the regression estimates.  Although this rigorous examination 
of question is beyond the scope of this study, several observations are in order. 
 It has been argued, for example, that Arizona’s high rate is largely due to that state 
reacting slowly in mandating precautionary measures and then removing them too 
quickly after they had (Vox, 2020).  But our findings suggest that the various mandates 
we tested on a national basis were not significant explanatory variables in explaining 
COVID-19 deaths.  In addition, Arizona’s mandate score, as shown in Table 6, ranked 
30th.  While that was below the mean and median, it hardly indicates a lax response, at 
least relative to all 50 states.  Some have argued that a more viable rationale for Arizona’s 
high death rate is that relatively high temperatures in Arizona kept people inside their 
homes where close contact and poor ventilation helped transmit the virus (Vox, 2020). 
 The fact that Connecticut and New Jersey experienced higher unexplained 
COVID-19 deaths is almost certainly due to a large percentage of their populations 
commuting to New York (Hartford Current, May 1, 2020).   While our regression 
equations were able to capture New York’s high death rate as a result of adding a variable 
that measured its extraordinarily high density (sdensity), that variable was not relevant 
for contiguous states that were closely connected to New York City’s urban core. 
 In the case of Louisiana, many have suggested that its high COVID-19  death rate 
is due to its relatively high share of African Americans who disproportionately suffered 
from the coronavirus (The Advocate, April 24, 2020) as well as the state’s higher 
incidence of diabetes and obesity.  Our model, however, held these factors constant in our 
regression tests.  In light of this, we believe it is more likely that the higher transmission 

TABLE 9 
Estimated COVID-19 Death Rates Deviating More than 1.5 Standard Errors (±26.4) 

from the Actual Values 

State Actual Estimate  Residual 

Arizona   69.0 42.1 -26.8 

Connecticut 125.0 93.7 +31.3 

Louisiana 106.0 48.2 +57.8 

Maryland   62.0 90.8 -28.8 

New Jersey 179.0               146.8 +32.2 

North Carolina   26.0 56.2 -30.2 
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during the early stages of the coronavirus was due to its celebration of Mardi Gras in late 
February.  Following the celebration, Louisiana experienced the fastest growth in 
COVID-19 infection rates in the world (Katy Reckdahl et al., New York Times, updated 
April 13, 2020). 
 We have no explanations for the low rate of COVID-19 deaths as compared to our 
estimates for Maryland and North Carolina.  But in analyzing the residuals, we found a 
curious geographic pattern.  In addition to Maryland and North Carolina experiencing 
lower than expected death rates, we found, as shown in Table 10, the contiguous states of 
Delaware, West Virginia, and Virginia also had negative residuals. 
 

 
 The low probability of negative residuals being geographically clustered together 
in a region of five states warrants further investigation. 
 
 
Conclusion 
 
 A great deal of attention has been given to the actions taken by state governments 
and their governors to control the spread of COVID-19 and reduce its death toll.  These 
actions have engendered much controversy over their efficacy.  In spite of this, no 
academic papers have been published that examine and explain statewide differences in 
COVID-19 infections and deaths.  This study hopes to fill that gap by presenting a 
stepwise regression model that measures the impact of hypothesized explanatory 
variables on each state’s COVID-19 death rate. 
 Perhaps our most important finding is that the density of a state’s population is 
clearly the most important factor explaining a state’s death rate.  This finding may seem 
intuitively obvious.  It runs counter, however, to several important quantitative studies 
that focus on counties and metropolitan statistical areas.  In contrast to our findings, these 
studies found that population is more important than density in explaining infections and 
deaths from the coronavirus. 

TABLE 10 
Estimated COVID-19 Death Rates as Compared to Actual Rates 

State Actual Estimate  Residual 

Maryland 62.0 90.8 -28.8 

Delaware 62.0 78.3 -16.3 

West Virginia 12.0 25.3 -13.3 

Virginia 30.0 42.1 -12.1 

North Carolina 26.0 56.2 -30.2 
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 The fact that we reached different conclusions, we believe, is not because our 
study is more macro in scope.  More likely, they stem from different research and 
methodological designs. 
 Given the significance of our finding relating to the powerful role that density 
plays in explaining COVID-19 death rates, we conclude that density at the state and local 
levels needs to be given serious attention in planning and public policy considerations 
and formulations.  Although less significant than density, our empirical results also 
suggest that higher poverty rates are associated with higher COVID-19 death rates.  
Specifically, we found in our elasticity calculations that a 10 percent increase in the 
poverty rate leads to a 2.7 to 4.6 percent increase in the death rate. 
 Race and ethnicity also play a role.  A 10 percent increase in the proportion of the 
state’s African-American and Hispanic populations are associated with increases in 
COVID-19 deaths that range between 1.0 to 3.4 percent.  A greater proportion of Asians, 
on the other hand, leads to lower death rates.   
 We were initially surprised that government mandates issued by state 
governments appear to have no significance in changing the likelihood of dying from 
COVID-19.  Simultaneity bias, however, may be clouding our results.  While additional 
research is needed to reach more definite conclusions, it should be noted that we found no 
compelling evidence that government mandates were effective in reducing the COVID-
19 death rate. 
 An examination of the residuals from our best-fit equation suggests that the 
widest differences between estimated and actual death rates are mainly due to unique 
circumstances in various states.  The fact that our model identified those states opens 
interesting lines of future research. 
 With respect to this research, we look forward to tracking and updating our 
regression findings as more data become available.  More importantly, we will test 
whether our methodology and model structure are applicable at the county and MSA 
levels. 
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